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Abstract. This paper develops estimators for dynamic microeconomic models with serially correlated

unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the

distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to

a dynamic form of sample selection bias. We focus on single-agent dynamic discrete choice models and

dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure

and a two-step method and use them to estimate an extended version of the capital replacement model

of Rust with the original data and in a Monte Carlo study.
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1. Introduction

This paper proposes methods for estimating a class of dynamic microeconomic models with serially

correlated latent state variables. Time-varying unobserved heterogeneity of this sort can lead to biased

parameter estimates and, in turn, incorrect inferences and predictions about economic outcomes. We

propose two estimators that avoid such bias by explicitly accounting for non-iid error structures. They are

extensions of two commonly used methods: the full solution maximum likelihood approach of Rust (1987)

and the two-step estimator of Bajari, Benkard and Levin (2007). The methods are fairly general, but we

focus primarily on two common special cases for simplicity: single-agent dynamic discrete choice (DDC)

models and dynamic games of incomplete information. In both cases, the observed and unobserved

states may be discrete, continuous, or a combination of both.
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The source of the bias from ignoring a serially correlated latent state variable can be viewed as a

dynamic extension of the bias that arises in static, linear sample selection models (Heckman, 1979). How-

ever, the models we consider are dynamic and nonlinear and so the nature of the bias is more complex,

the direction of the bias can be ambiguous, and the computational burden faced when accounting for

such variables by standard Monte Carlo integration is severe. Nevertheless, accounting for unobserved

heterogeneity is important in applied work in many fields of economics and it can take many forms, such

as unobserved types of agents, random coefficients, unobserved product or choice characteristics, or

unobserved aggregate shocks. As such, there are many potential applications of the methods developed

herein to problems in applied microeconomics. Examples of latent state variables from industrial organi-

zation include unobserved market-level shocks and firm-specific productivity shocks. In labor economics,

ability or wage offers may be unobserved. In health economics, latent health status is important.

To illustrate the proposed methods and to provide intuition for the potential problems that can arise,

we revisit the well-known optimal capital replacement problem of Rust (1987) in a generalized form with

continuous state variables and where one of these state variables is unobserved and possibly serially

correlated. Because the basic model is simple and tractable, but also representative of richer models, the

original model has become a benchmark for demonstrating new methods (Aguirregabiria and Mira, 2002;

Bajari et al., 2007; Norets, 2009b, 2012; Arcidiacono and Miller, 2011; Su and Judd, 2012). Estimating this

optimal renewal model using Rust (1987)’s original data and carrying out Monte Carlo experiments using

the extended model will allow us to provide insights into the dynamic sample selection phenomenon and

to illustrate our proposed solutions in a familiar setting, but also yields new insights about the data.

The potential dynamic selection problem is straightforward in Rust (1987)’s model. Consider a forward-

looking individual facing an optimal replacement investment decision: a machine becomes more and

more costly to maintain with each month of use; each month the individual may pay a one-time cost to

replace the machine with a new one. The parameter of interest is the cost of replacement relative to the

cost of maintenance. In addition to months of use, which is observed, suppose there is an unobserved

state variable representing additional costs per month that aren’t due directly to usage (e.g., type or

intensity of use, conditions, etc.). If these unobserved costs are serially correlated, then there may be

dynamic sample selection on unobservables (e.g., if machines that are more unobservably costly are

replaced more frequently). If ignored, this can in turn result in biased parameter estimates.

To understand the potential computational problem raised by latent state variables, consider an

observed sequence y1:T = (y1, . . . , yT ), which is thought to depend on an unobserved sequence of latent

state variables ª1:T = (ª1, . . . ,ªT ) and a vector of parameters µ.1 The likelihood can be written as2

p(y1:T ;µ) =
Z

p(y1:T ,ª1:T ;µ)dª1:T =
Z

p(y1:T | ª1:T ;µ) p(ª1:T ;µ)dª1:T . (1)

1For simplicity we will use the notation yt to denote both the random variable Yt as well as a particular realization Yt = yt .

Furthermore, we assume that the distributions of all continuous variables admit densities with respect to Lebesgue measure. We

treat discrete variables analogously with respect to the counting measure. Generically, the density of Yt evaluated at yt will be

denoted p(yt ) as long as there is no ambiguity.
2We include µ to indicate that these densities depend on the parameters, but we use a semicolon to separate µ to indicate that

it is not a random variable nor is it considered part of the conditioning set; rather, µ is deterministic throughout the paper.
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If the latent state variables are exogenous, then in principle one could simulate draws from p(ª1:T ;µ)

directly. However, this is potentially a very high-dimensional integral and Monte Carlo integration via

simulation of paths ª1:T is not a very efficient way to evaluate it.

A further complication arises if, as in this paper, we wish to allow for endogenous feedback whereby

outcomes of the observable process yt can influence future values of the latent process ªt+1. In order to

apply maximum simulated likelihood (MSL) one must factor the likelihood into components that can be

simulated directly. In such cases we cannot simulate from the unconditional distribution in (1) directly,

but an alternative representation is useful:3

p(y1:T ;µ) =
Z

· · ·
Z"

TY

t=1
p(yt | ªt , yt°1;µ) p(ªt | yt°1,ªt°1;µ)

#

dªT . . . dª1 (2)

Although we can usually now simulate from the distributions p(ªt | yt°1,ªt°1;µ) directly, this still involves

a high-dimensional integral.

The approach we propose is based on yet a third way of writing the likelihood function:

p(y1:T ;µ) =
TY

t=1
p(yt | y1:t°1;µ) =

TY

t=1

Z
p(yt | ªt , yt°1;µ) p(ªt | y1:t°1;µ)dªt . (3)

Sequential Monte Carlo (SMC) methods can be used to draw from p(ªt | y1:t°1;µ), which is the posterior

distribution of the unobserved random variable ªt conditional on the data y1:t°1. This allows us to avoid

the high-dimensional integrals in (1) and (2) and instead use a product of one-dimensional integrals as in

(3). We propose two estimators which involve maximum likelihood estimation of parameters where the

likelihood function is be integrated with respect to the posterior distribution of the latent state as above.

In the dynamic discrete choice literature, serial correlation of unobservables has been a concern

from the beginning and remains so at present (Eckstein and Wolpin, 1989; Rust, 1994; Aguirregabiria

and Mira, 2010). However, until recently the known methods for estimating models with non-trivial

correlation structures were either application-specific or were not applicable to arbitrary distributions of

the unobserved states. See Pakes (1994) and Ackerberg, Benkard, Berry and Pakes (2007, Section 3.8.1) for

an overview of three such methods and Pakes (1986), Timmins (2002), and Aguirregabiria and Mira (2007)

for applications of those methods.

Identification and estimation of dynamic models with serially correlated unobserved state variables is

a topic of recent interest in the literature. Hu and Shum (2012, 2013) address nonparametric identification

of the Markov transition kernel in dynamic single-agent models and games with serially correlated unob-

served state variables. Blevins (2014) provides conditions for nonparametric identification of dynamic

models with discrete and continuous controls, such as the dual entry and investment choices encountered

in many models in industrial organization, which can be combined with results of Hu and Shum (2012,

2013) to establish nonparametric identification of dual choice models with serially correlated unobserv-

ables such as those considered in this paper. Imai, Jain and Ching (2009) develop a Bayesian method for

estimating single agent dynamic discrete choice models with finite state spaces using a Markov chain

3Here, for simplicity, we have used an additional assumption the process is a first-order Markov process where p(yt ,ªt |
y1:t°1,ª1:t°1;µ) = p(yt ,ªt | yt°1,ªt°1;µ). The models we consider later will satisfy this assumption.
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Monte Carlo (MCMC) algorithm which simultaneously solves the dynamic program and estimates the

parameters. Norets (2009b) extends this idea, developing Gibbs sampling methods which allow for serially

correlated unobserved state variables. In terms of classical estimation, Arcidiacono and Miller (2011)

estimate models with discrete, time-varying unobserved states by iteratively applying the EM algorithm

in combination with the CCP (conditional choice probability) based estimation approach of Hotz and

Miller (1993). Keane and Wolpin (1994) propose a combination of simulation and interpolation and

Stinebrickner (2000) considered Gaussian quadrature and interpolation. Finally, Aguirregabiria and Mira

(2007) demonstrate how to estimate dynamic games with time-invariant unobserved heterogeneity.

This paper is also related to sequential Monte Carlo methods more broadly, which originated in

signal processing and engineering applications. For a survey, see Doucet, de Freitas and Gordon (2001)

and the citations therein. In the economics literature, this approach has been used by Fernández-

Villaverde and Rubio-Ramírez (2007) to estimate structural macroeconomic models with stochastic

volatility. Microeconomic models raise new considerations in that there are numerous unobserved states

to consider (e.g., for each agent in each of possibly many markets) and that in many cases the controls are

discrete rather than continuous. Furthermore, in the case of dynamic games, solving for the equilibria of

the model is not always feasible and so two-step methods can be useful. Creal (2012) surveys the use of

SMC methods in economics and finance.

Particle filters can also be used for Bayesian inference about the parameters and latent state variables

jointly, as both Flury and Shephard (2011) and Gallant, Hong and Khwaja (2010) have done in work

independent of ours. Flury and Shephard (2011) propose constructing unbiased estimates of likelihoods

using particle filters for carrying out MCMC using the Metropolis-Hastings algorithm. Gallant et al. (2010)

use a Bayesian approach to estimate a complete-information dynamic discrete model of entry and recover

unobserved firm-level costs in the generic pharmaceutical industry. In contrast, we consider incomplete

information models, focus on classical estimation, and discuss both full-solution and two-step methods.

Finally, the methods proposed herein have subsequently been used in other applications. Fang and

Kung (2010) apply the full-solution estimator to estimate a model of life insurance policy lapsation,

accounting for unobserved, serially correlated shocks to income, health, and bequest motives. Blevins,

Khwaja and Yang (2014) apply the two-step estimator to a dynamic oligopoly model of the Canadian fast

food industry in which firm size spillovers are incorporated via firm-specific, time-varying unobservables.

In Section 2, we introduce the class of dynamic discrete choice models and dynamic games of interest

and characterize them as nonlinear state space models. Section 3 introduces sequential Monte Carlo

methods and shows how to apply them to the models of interest. Section 4 describes the two proposed

estimators and in Section 5 we apply them to a generalized version of the capital replacement model of

Rust (1987) using the original data and in a series of Monte Carlo experiments. Section 6 concludes.

2. Dynamic Microeconomic Models as Nonlinear State Space Models

Sequential Monte Carlo methods were originally developed for nonlinear state space models. For example,

in many signal processing applications, the signal is modeled as an unobserved state and is only observed

along with some noise, which is a potentially serially-correlated, non-Gaussian, and nonlinear process
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which contaminates the signal. Dynamic microeconomic models tend to be more complex, because they

are controlled stochastic processes involving rational decision makers who control the joint stochastic

process in some way. In this section we show that, with some generalizations, sequential Monte Carlo

methods can still be applied successfully to these models. The primary difference is that the likelihoods

(conditional on the latent state) are usually more complex and only be evaluated numerically. Even in very

simple models, the state-space representation can be highly nonlinear and non-Gaussian, preventing the

use of methods such as Kalman filtering or GHK.4

Consider a discrete-time dynamic model with N agents, indexed by i = 1, . . . , N , over an infinite time

horizon, indexed by t = 1,2, . . . ,1. The state at time t is summarized by a state vector (st ,¥t ) 2S £N

where st 2S is common knowledge to all agents but ¥t = (¥1t , . . . ,¥N t ) 2N ¥N1 £ · · ·£NN is a vector of

private shocks where ¥i t 2Ni is private information of agent i .

Each period, each agent i observes the state and makes a choice ai t from the choice set Ai . Define

A ¥A1 £ . . .£AN and let at = (a1t , . . . , aN t ) 2A denote the vector of all actions at time t . Upon making

the choices at , each agent i receives a payoff Ui (at , st ,¥i t ,µ) associated with making choice ai t in state st ,

given that agent i ’s rivals make choices a°i t = (a1t , . . . , ai°1,t , ai+1,t , . . . , aN t ).

Agents are forward-looking and share a common discount factor Ø 2 [0,1), which is known by the

researcher. Agent i ’s discounted expected future payoff when the market is in state st is

E
∑ 1X

ø=t
Øø°tUi (aø, sø,¥iø,µ)

ØØØØ st

∏
,

where the expectation is taken over the infinite sequence of actions, states, and private shocks.

Before proceeding we make several standard assumptions to make the model more tractable (cf. Rust,

1994; Aguirregabiria and Mira, 2010). Let æ= (æ1, . . . ,æN ) denote a profile of policy functions. A policy

function that depends on the past history of the process only via the contemporaneous payoff-relevant

state variables st and ¥i t is called Markovian.

Assumption 1 (Markovian Policy Functions). Each agent i = 1, . . . , N follows a Markovian policy function

æi : S £Ni !Ai : (s,¥i ) 7! a =æi (s,¥i ) that assigns the optimal action a in state s given ¥i .

Since we consider the case of stationary decision processes where the transition probabilities, utility

functions, and discount factors are time invariant, the optimal Markovian policies will be stationary.

Assumption 2 (Conditional Independence). The state variables follow a first-order controlled Markov

process where the joint distribution can be factored as

p(st ,¥t | a1:t°1, s1:t°1,¥1:t°1;µ) = p(st | at°1, st°1;µ) p(¥t | st ;µ).

4In linear models with serially-correlated, Gaussian unobserved state variables, the GHK simulator (cf. Hajivassiliou and Ruud,

1994) has been effective in carrying out the required integration. However, the models we consider are highly nonlinear and

potentially non-Gaussian and the regions of integration are non-rectangular. Furthermore, in the models we consider the latent

variables may be endogenous to the choice variables and there may be feedback to the observed state variables.
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Remark. This assumption requires that the transient unobservables ¥t are independent of the previous

actions and are serially independent conditional on st , but it does not restrict either the observed or un-

observed components of st to be conditionally serially independent. This is in contrast to the conditional

independence assumption of Rust (1994), where all unobservables are required to be serially independent.

Remark. Importantly, Assumption 2 allows at°1 to affect the transition from st°1 to st . Therefore, variables

that depend on actions in the past, such incumbency or potential entrant status in an entry-exit model,

are permitted to be elements of st under these assumptions.

Assumption 3 (Private Information). The private shocks ¥i t are independent across i in each period t

and follow a known distribution Gi (· | st ;µ) with support Ni .

These assumptions imply that we can write the joint distribution as follows:

p(at , st ,¥t | a1:t°1, s1:t°1,¥1:t°1;µ) = p(at | a1:t°1, s1:t ,¥1:t ;µ)p(st ,¥t | a1:t°1, s1:t°1,¥1:t°1;µ)

= p(at | st ,¥t ;µ)p(st | st°1, at°1;µ)p(¥t | st ;µ)

The second line follows immediately Assumptions 1 and 2 above while Assumption 3 further requires that

the distribution of unobservables is known.

We now depart from the standard framework and consider the presence of unobserved state variables.

We let st be partially observed and write st = (xt ,ªt ) where xt is observed by the researcher, along with the

choices at , but ªt is an unobserved state. Both states xt and ªt are common knowledge among the agents.

Since xt and ªt may be multidimensional, this allows for general forms of both market- and agent-level

time-varying unobserved heterogeneity. This is also where our framework departs from the state space

models to which SMC methods are usually applied; they do not have observed state variables, xt , only an

observation process, at , and an unobserved signal, ªt , and at is continuous but here it may be discrete.

In order to apply sequential Monte Carlo methods to this model, it will be useful to take a stand on the

timing of the dependence, if any, between xt and ªt while still allowing for complex patterns of feedback

between the observed and unobserved states and the control variables.

Assumption 4 (Feedback Timing). Conditional on ªt , xt°1, and at°1, xt is independent of ªt°1:

p(xt | ªt , xt°1,ªt°1, at°1) = p(xt | ªt , xt°1, at°1).

Remark. Thus, the models we consider here are quite general in that they allow for dependence between

xt and ªt , but we limit this dependence to cases under Assumption 4 in order to simplify the exposition of

the algorithm. Without this assumption, one would need to track both ªt and ªt°1 when evaluating the

transition density of xt . From a modeling perspective we therefore focus on cases where ªt influences xt

but it is equally plausible that one might prefer to model p(xt | ªt°1, xt°1, at°1) instead. In that case the

time indices in the procedures described below simply need to be adjusted accordingly.

A convenient representation of the model will be in the form of the following two densities:

p(yt | yt°1,ªt ;µ) = p(at | xt ,ªt ;µ) p(xt | ªt , at°1, xt°1;µ),

p(ªt | yt°1,ªt°1;µ) = p(ªt | xt°1, at°1,ªt°1;µ)
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The first density above is the likelihood, the conditional density of observables yt = (at , xt ), which is

the product of the density (or probability) of the choice variable at conditional on the state variables

and the transition density for xt . As is typical, the former is fully specified by the model and the latter is

determined by the model and the distribution G of the choice-specific shocks ¥t . The second density

above is the transition density of the unobservables, ªt . Relative to standard models, this density is new

but is also specified as part of the model along with the transition density of xt .

In the sections that follow, we consider two common special cases: dynamic games of incomplete

information and single agent dynamic discrete choice models. We show, for example, that single agent

dynamic discrete models can be written in the nonlinear state space form above where the likelihood

is the product of the conditional choice probabilities, p(at | xt ,ªt ;µ), and the transition density of the

observed states, p(xt | at°1, xt°1,ªt ;µ). The law of motion for the latent state, p(ªt | xt°1, at°1,ªt°1;µ),

may in turn depend on past values of the discrete choice, at°1.

2.1. Single-Agent Dynamic Discrete Choice Models

Here we consider a class of models which generalizes the framework of Rust (1994) by incorporating a

serially correlated latent state variable. Since there is only a single agent (N = 1), we omit the i subscript

from states and payoffs in this section. In each period the agent makes a single choice a from a discrete

choice set A = {0,1, . . . ,K } and associated with each choice is a choice-specific shock "t a . Here, the private

information shock is simply ¥t = "t and the support of "t = ("t0, . . . ,"tK ) is RK+1. We make the following

standard additive separability assumption.

Assumption 5 (Additive Separability). U additively separable in "t : U (at , st ,"t ,µ) = u(at , st ,µ)+"t a .

Since the problem is recursive in nature, we will omit the time subscripts on variables when convenient

and use (s0,"0) to denote the one-period-ahead counterpart of (s,"). The value function for this model can

then be expressed as

V (s,",µ) = max
a2A

©
u(a, s,µ)+"a +ØE

£
V (s0,"0,µ) | s, a

§™
.

We also define the choice-specific value function, v(a, s,µ), which represents the current and future

expected payoff from choosing a, net of the idiosyncratic component "a :

v(a, s,µ) ¥ u(a, s,µ)+ØE
£
V (s0,"0,µ) | s, a

§
.

Under Assumption 5, we can now express the problem in a more compact form, a form which

resembles a static discrete choice problem with the choice-specific value function playing the role of the

period payoff function. Letting æ(s,",µ) denote the optimal policy, or choice of a,

æ(s,",µ) = argmax
a2A

[v(a, s,µ)+"a] .

Under certain distributional assumptions for ", the model admits conditional choice probabilities

with known analytical forms. In particular, in applied work it is often assumed that the components of "
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are iid and follow the type I extreme value distribution. Under this assumption, the conditional choice

probabilities have a closed form in terms of the choice-specific value function,

P (æ(a,",µ) = a | s;µ) = exp(v(a, s,µ))
P

j2A exp(v( j , s,µ))
,

and v(a, s) is the unique fixed point to the contraction mapping (Rust, 1994):

°(v)(a, s,µ) = u(a, s,µ)+Ø
Z

ln

"
X

j2A

exp(v( j , s0,µ))

#

p(s0 | s, a;µ)d s0. (4)

To summarize, Assumption 5 allows us to restate the problem as a simple static discrete choice

problem. This problem is still intractable for an arbitrary distribution Gi , but the type I extreme value

distribution leads to the convenient closed form above for P (a | s;µ), in terms of the choice specific value

function v(a, s,µ). Importantly, it also allows us to obtain v(a, s,µ) as the fixed point of the functional

equation above. This provides a clear path for evaluating it numerically using any number of methods

such as value function iteration or projection methods (cf. Judd, 1998). Then, since we can evaluate

v(a, s,µ) for any choice a and state s, we can now evaluate P (a | s), which is needed to evaluate the

likelihood and brings us one step closer to being able to estimate the model.

This also illustrates the distinction between computation and estimation with regard to the choice

probabilities P (a | s;µ). For computation it is irrelevant that s is only partially observed because the model

is defined conditional on s = (x,ª). The distinction between the observed and unobserved states becomes

important at the estimation stage.

2.2. Dynamic Games of Incomplete Information

In the case where N > 1, each agent’s optimal decision depends on the expectations that agent holds

about the actions of the other agents. We assume that agents use Markovian strategies that are consistent

with a Markov perfect equilibrium (MPE). Given a strategy profile æ = (æ1, . . . ,æN ), agent i ’s expected

discounted future payoff in state s can be expressed recursively in terms of the ex-ante value function:

V̄i (s;æ,µ) = E
∑

Ui (æ(s,¥,µ), s,¥i ,µ)+Ø
Z

V̄i (s0;æ,µ) p(s0 | s,æ(s,¥,µ);µ)d s0
ØØØØ s

∏
.

The bar denotes that this is the expected value before ¥ is realized, hence, the expectation is with respect

to the distribution of ¥. Given a strategy æi for player i , in equilibrium each rival firm’s beliefs about firm

i ’s actions must correspond to the beliefs implied by the strategy æi and the distribution Gi of firm i ’s

private information. By including rival strategies inside the expectation above, we are integrating with

respect to the implied beliefs about rival firms.

Definition. A Markov perfect equilibrium (MPE) is a strategy profile æ = (æ1, . . . ,æN ) such that for all

i = 1, . . . , N and s 2S , V̄i (s;æi ,æ°i ,µ) ∏ V̄i (s;æ0
i ,æ°i ,µ) for all alternative Markov strategies æ0

i .

Two-step estimation methods are particularly useful for estimating dynamic games because they do

not require one to solve the model to determine the equilibria. Following most papers in the literature on
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two-step estimation (e.g., Bajari et al., 2007; Aguirregabiria and Mira, 2010) we require that the data be

generated by a single Markov perfect equilibrium and that all players expect the same equilibrium to be

played in all periods.

Assumption 6 (Equilibrium Selection). The data are generated by a single MPE profile æ.

Assumption 6 is identical to Assumption ES of Bajari et al. (2007). Under this assumption, dynamic

games of this form have a nonlinear state space representation where p(at | xt ,ªt ;µ) is the conditional

density of at implied by æ given the distribution of ¥ and µ. Thus, the conditional density of choices

implied by the Markov strategy æ plays the same role in the likelihood as the discrete choice probabilities

in the single agent DDC model.

3. Sequential Monte Carlo Methods

Sequential Monte Carlo methods, or particle filters, are simulation-based methods for approximating

posterior distributions of unobserved state variables in nonlinear and non-Gaussian state space models.

We focus on the bootstrap filter introduced by Gordon, Salmond and Smith (1993) which is relatively

simple but still captures the essence of more recent variations.5 We first introduce the optimal nonlinear

filtering problem arising due to the unobserved states and then introduce SMC methods as approximate

solutions to this problem. This state space model and the methods discussed in this section will provide a

foundation for the maximum filtered likelihood (MFL) estimators considered in Section 4.

3.1. Optimal Filtering

Given the generic nonlinear state space model from Section 2, the two primary problems of interest to a

researcher who has a collection of observations {yt }T
t=1 are estimating the posterior distribution of the

unobserved state ªt given the observed data and estimating the unknown parameters µ. From a classical

perspective, µ is deterministic and these are distinct problems. In this setting, we can first recover the

posterior distribution of ªt then use it form a likelihood function with which we can estimate µ. From a

Bayesian point of view, inference on ªt and µ are essentially the same problem, since µ can be treated as a

time-invariant component of ªt , with the joint posterior distribution of (ª1:T ,µ) being of interest.

Here consider estimation of marginal posterior distributions of the formºt |s(dªt ) ¥ P
°
ªt 2 dªt | Y1:s = y1:s

¢
.6

The cases s < t , s = t , and s > t are referred to, respectively, as prediction, filtering, and smoothing. Particle

filters are methods for approximating sequential filtering distributions ºt |t . Conveniently, the one-step-

ahead prediction distribution ºt |t°1 is also approximated in the process.

The filtering distribution ºt |t can be represented recursively, starting with the initial distribution º0,

by applying a series of prediction and updating steps using Bayes’ theorem and the transition kernel

5Variations to the basic algorithm usually involve different proposal distributions, such as the auxiliary particle filter (Pitt and

Shephard, 1999), or alternative resampling schemes, such as multinomial resampling (Gordon, Salmond and Smith, 1993) and

residual resampling (Liu and Chen, 1998).
6For simplicity, we let the dependence on µ be implicit in this section.
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Q(dªt | ªt°1, yt°1) = Pr
°
ªt 2 dªt | ªt°1, yt°1

¢
, which gives the probability of ªt arriving in dªt given ªt°1

and yt°1. Given ºt°1|t°1, the one-step-ahead prediction and filtering distributions are

ºt |t°1(dªt ) =
Z

Q(dªt | ªt°1, yt°1)ºt°1|t°1(dªt°1) and (5)

ºt |t (dªt ) =
p(yt | yt°1,ªt )ºt |t°1(dªt )R
p(yt | yt°1,ªt )ºt |t°1(dªt )

. (6)

Analytic solutions for the optimal filtering problem are only known for special cases. Kalman Filters

(Kalman, 1960) have been used very successfully in models that are both linear and Gaussian. The models

we study, on the other hand, are nonlinear and non-Gaussian.

3.2. A Generic Particle Filter

Sequential Monte Carlo methods, or particle filters, are a class of methods which aim to approximate

the sequence of posterior distributions ºt |t using a weighted collection of R particles, or weighted mass

points, {(ªr
t , wr

t )}R
r=1 that evolve over time. The particles can be used to form an empirical probability

measure which approximates ºt |t :

ºR
t |t (dª) =

PR
r=1 wr

t ±ªr
t
(dª)

PR
r=1 wr

t

,

where ±ª denotes the measure that assigns mass 1 at ª and zero elsewhere.

Particle filters operate in a recursive manner: given ºR
t°1|t°1 and a new observation yt , we form an

approximation ºR
t |t°1, motivated by (5), and use it to form an approximation ºR

t |t using an approach

motivated by (6). We describe a generic particle filter here, but for more thorough descriptions of SMC

methods there are several very good sources available such as Künsch (2001), Doucet, de Freitas and

Gordon (2001), Liu (2001), and Cappé, Moulines and Ryden (2005).

The particle filtering algorithm begins with an iid sample {ªr
0}R

r=1 of draws from a chosen initial

distribution º0 and assigns each draw a weight of 1 to form the uniformly weighted collection {(ªr
0,1)}R

r=1.

The resulting empirical measure ºR
0 serves as an approximation to º0. If the researcher knows the initial

distribution of ª0, then that distribution should be used as º0. Otherwise, º0 is simply the (initial)

importance sampling distribution. Relative to static importance sampling, the influence of the choice of

this initial distribution is diminished as new information is brought to bear with each additional period of

data. The effect of the initial distribution decays exponentially in the number of periods (Whiteley, 2012).

Proceeding recursively, suppose we begin with a uniformly weighted collection of particles {(ªr
t°1,1)}R

r=1

at time t distributed approximately according to ºt°1|t°1. For each r = 1, . . . ,R, following (5), draw

ª̃r
t ªQ(dªt | ªr

t°1, yt°1)

and set w̃r
t = 1 to form the uniformly weighted particle system {(ª̃r

t , w̃r
t )}R

r=1. The empirical measure

º̃R
t |t°1(dªt ) ¥ R°1 PR

r=1±ª̃r
t
(dªt ) approximates ºt |t°1(dªt ). Then following (6), we obtain

º̃R
t |t (dªt ) ¥

p(yt | yt°1,ªt ) º̃R
t |t°1(dªt )

R
p(yt | yt°1,ªt ) º̃R

t |t°1(dªt )
=

PR
i=1 p(yt | yt°1, ª̃i

t )±ª̃i
t
(dªt )

PR
i=1 p(yt | yt°1, ª̃i

t )
.
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The weighted particle representation of this distribution is obtained by setting the weights to be propor-

tional to the likelihood of the new observation yt , with wr
t = p(yt | yt°1, ª̃r

t ), yielding the particle system

{(ª̃r
t , wr

t )}R
r=1. Finally, we obtain a uniformly weighted particle system by resampling R particles {ªr

t }R
r=1

from the empirical distribution º̃R
t |t and setting wr

t = 1 for all r . The resulting approximation is

ºR
t |t (dªt ) ¥ 1

R

RX

r=1
±ªr

t
(dªt ).

The process is perhaps easiest to understand in algorithm form:

• Initialization: Draw ªr
0 ª º̃0(dª0) for each r = 1, . . . ,R.

• Recursion: Repeat the following steps for each t = 1, . . . ,T .

– Importance sampling: Draw ª̃r
t ª Q(dªt | ªr

t°1, yt°1) and set wr
t = p(yt | yt°1, ª̃r

t ) for each

r = 1, . . . ,R.

– Resampling: For each r = 1, . . . ,R, draw ªr
t from the collection {ª̃r

t }R
r=1 in proportion to the

weights {wr
t }R

r=1.

One of the benefits of using the particle filter in this context is that it only requires evaluating or

sampling from densities that arise naturally as part of the model specification. Note that we also obtain an

approximation to the prediction distribution, ºR
t |t°1, as a by-product of the algorithm using the uniformly-

weighted particles ª̃r
t drawn from the proposal distribution. This prediction distribution will be useful

later, as we use it to integrate the likelihood function over the distribution of the latent state.

4. Estimation

The sequential Monte Carlo methods discussed above solve the problem of drawing from the various

posterior distributions. In this section we turn to the problem of estimating the unknown parameters µ

given a sample of N iid observations of length T denoted {y1,1:t , y2,1:t , . . . , yN ,1:T } where yi ,s:t = {yi ,ø, s ∑
ø∑ t }. Let ªi ,s:t be defined similarly.

How one estimates the model and how one solves the model (if at all) are two distinct problems. Here

our focus is on estimation. How and when a particle filter can be applied also differs for each estimation

method. We consider both a general full-solution approach, which assumes that it is feasible to evaluate

the likelihood p(yt | ªt , yt°1;µ) (e.g., the model can be solved somehow to obtain choice probabilities),

and a two-step estimator based on that of Bajari, Benkard and Levin (2007), which flexibly estimates

the policy functions in a first step and then estimates the structural parameters using the equilibrium

conditions in a second step. In the full solution maximum likelihood approach, we can simply use the

particle filter to approximate the likelihood function and maximize it, yielding point estimates for all

parameters. In the two step approach, the particle filter must be applied in the first step to recover both

the distribution of the unobserved state as well as policy functions which condition on the unobserved

state. As is the case without unobserved heterogeneity, the two-step estimator is less efficient than the

11



full solution approach and requires the researcher to choose certain quantities such as the number of

simulation draws, the distribution of alternative policy functions, etc. Hence, when it is computationally

feasible the full solution estimator is preferable.

4.1. Maximum Filtered Likelihood (MFL) Estimation

Given observations {yi ,1:T }N
i=1 and following (3) the log-likelihood function is

LN (µ) =
NX

i=1

TX

t=1
ln p(yi ,t | yi ,1:t°1;µ) =

NX

i=1

TX

t=1
ln

Z
p(yi ,t | ªi ,t , yi ,t°1;µ) p(ªi ,t | yi ,1:t°1;µ)dªt .

This is an integral with respect to the step-ahead filtering distribution. If we can evaluate p(yi ,t |
ªi ,t , yi ,t°1;µ) and if we can draw from the transition density of ªi ,t , then a particle filter can facilitate

maximum likelihood estimation of µ since we can readily form the approximation

p(yi ,t | yi ,1:t°1;µ) º 1
R

RX

r=1
p(yi ,t | ª̃r

i ,t , yi ,t°1;µ)

by using the approximate empirical distribution ºR
t |t°1, formed using the particle system {(ª̃r

i ,t ,1)}R
r=1. This

leads directly to the following approximation to the log-likelihood function:

L̂N ,R (µ) ¥ 1
N

NX

i=1

TX

t=1
ln

"
1
R

RX

r=1
p(yi ,t | ª̃r

i ,t , yi ,t°1;µ)

#

.

We define the maximum filtered likelihood (MFL) estimator as

µ̂N ,R = argmax
µ2£

L̂N ,R (µ).

Following the application in Section 5, we report the results of a series of Monte Carlo experiments

which suggest that the estimator performs well in dynamic discrete choice models even when the number

of particles is small. Here we focus on establishing consistency of the MFL estimator as N ! 1 and

R !1. Note that we can approximate the log likelihood function as

L̂N ,R (µ) = 1
N

NX

i=1

TX

t=1
ln

"
1
R

RX

r=1
p(yi ,t | ª̃r

i ,t , yi ,t°1;µ)

#

= 1
N

NX

i=1
ln ĥ(yi ,1:T ,µ)

where ĥ(yi ,1:T ,µ) =QT
t=1

1
R

PR
r=1 q(ªr

i ,t , yi ,t°1, yi ,t ,µ) and where q(yi ,t , yi ,t°1,ªr
i ,t ,µ) = p(yi ,t | ª̃r

i ,t , yi ,t°1;µ).

Viewed in empirical process terms, let PN denote the empirical measure associated with observations

yi ,1:T for a sample of size N and let P denote the population distribution of yi ,1:T . Similarly, let S yi ,1:t

R denote

the empirical measure of the particles ªr
i ,t for r = 1, . . . ,R generated by the particle filtering algorithm

conditional on the observations yi ,1:t and let S yi ,1:t denote the true distribution. Under the assumption

that the sample consists of N of independent observations of yi ,1:T , the behavior of the likelihood function

as N !1 can be handled by standard empirical process techniques such as those used by Pakes and

Pollard (1989). On the other hand, to analyze the behavior as the number of particles R !1 we appeal to

empirical process results for genetic, interacting particle systems by Del Moral and Ledoux (2000).
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Returning to the likelihood function, we have L̂(µ) = PN ln ĥ(·,µ) where PN f denotes N°1 PN
i=1 f (yi ,1:T )

and ĥ(yi ,1:T ,µ) = QT
t=1 S yi ,1:t

R q(·, yi ,t°1, yi ,t ,µ). Likewise, the population likelihood function is L(µ) =
P lnh(·,µ) where P f denotes

R
f dP and h(y1:T ,µ) = QT

t=1 S y1:t q(·, yt°1, yt ,µ). The functions h and q

are, respectively, members of classes of functions H and Q indexed by µ 2£ and (y, y 0,µ) 2Y 2££. Below

we provide conditions on the classes of functions H and Q which guarantee that µ̂N ,R is consistent.

Theorem 1 (Consistency of µ̂N ,R ). Suppose the following conditions hold:

C0 The parameter space,£, is compact.

C1 The class of functions H = {h(·,µ) : µ 2 £} = {Sq : q 2 Q} are Euclidean in the L1(P ) norm in the

sense of Nolan and Pollard (1987, Definition 8) and Pakes and Pollard (1989, Definition 2.7) for the

envelope H with PH 2 <1. Similarly, the class Q = {q(·, y, y 0,µ) : (y, y 0,µ) 2Y 2 ££} is Euclidean in

the L1(S) norm for the envelope Q with SQ2 <1.

C2 There is an M <1 such that supyi ,1:T ,µ

ØØØ 1
h(yi ,1:T ,µ)

ØØØ< M and supª,y,y 0,µ

ØØq(ª, y, y 0,µ)
ØØ< M.

C3 L(µ0) > L(µ) for all µ 2£with µ 6= µ0.

If N !1 and R !1, then L̂N ,R (µ)° L̂N ,R (µ0) converges uniformly in probability over £ to L(µ)°L(µ0)

and µ̂N ,R
p! µ0.

We verify the conditions for consistency below in Section 5 in the context of the application. Several

examples of classes of functions satisfying the required uniform entropy conditions of Assumption C1 are

discussed in, for example, van der Vaart and Wellner (1996) and Pakes and Pollard (1989).

4.2. Two-Step Estimation

Sequential Monte Carlo methods can also be used to allow for unobserved heterogeneity in two-step

estimation methods. Here, we discuss an extension of the estimator of Bajari, Benkard and Levin (2007)

which treats the first step policy and transition equation estimation as a joint maximum likelihood

problem. As before, once we have specified reduced form policy functions and transition equations that

are conditional on the latent state, we can use particle filter samples to integrate the likelihood with

respect to the posterior distribution of the latent state. We can then form a joint first-step log-likelihood

function and estimate the parameters of the reduced form policy functions and the transition equations.

Since we have controlled for the unobserved state in the first step, these estimated functions can

be used to simulate the model in order to approximate the value function. The payoff function and

value function in turn depend on the unobserved state since the firms’ beliefs about their rivals and

state transitions include the unobserved state. With estimated policy and transition equations in hand,

estimation of the structural parameters becomes a computational exercise and proceeds almost exactly

as in Bajari, Benkard and Levin (2007), apart from the additional state variables.
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4.2.1. First Step Estimation

Strategies for estimating the policy functions in the first step tend to be model-specific and will depend

on the specific distributional assumptions made. The general goal in the first step is to estimate the

policy functions æi (st ,¥i t ) and the state transition density p(st | st°1, at°1). Any structural parameters

that appear in the transition density will be estimated, but the payoff parameters that determine the

structural choice probabilities be estimated in the second step.

In order to apply the particle filter, the densities implied by the policy functionsæi and the distribution

of ¥i t must belong to some known parametric family of functions. This rules out the use of many

nonparametric techniques in the first step, however, in practice researchers have typically used parametric

methods such as probit and logit regressions in the first step when applying this estimator (cf. Ryan, 2012).

Assumption 7 (Parametric First Step). The implied policy function belongs to a known family of functions

F = { f (·;Æ)} indexed by a finite vector of parameters Æ. Furthermore, µ can be partitioned as µ = (µ1,µ2)

so that the transition densities only depend on µ1 and the payoffs only depend on µ2:

p(xt | xt°1,ªt , at°1;µ) = p(xt | xt°1,ªt , at°1,µ1),

p(ªt | xt°1,ªt°1, at°1;µ) = p(ªt | xt°1,ªt°1, at°1,µ1),

Ui (at , st ,¥i t ,µ) =Ui (at , st ,¥i t ,µ2).

The second part of Assumption 7, that µ can be partitioned, is usually not restrictive since the payoff

parameters and transition density parameters are typically distinct. Both Æ and µ1 will be estimated in

the first step, leaving the payoff parameters µ2 to be estimated in the second step. The first part of the

assumption warrants more discussion.

We have maintained throughout that the payoffs and transition densities are parametric, so it follows

that the policy functions are parametric; however, it may be difficult to know the correct family F when

the policy functions are analytically intractable and can only be evaluated numerically, so the first part

of Assumption 7 is restrictive. It is important to note that the class of parametric functions chosen for

the first stage policy functions must be large enough to include the true policy functions in order for the

model to be internally consistent. For example, if one only uses a very simple logit model for the first

stage policy then most likely the actual policy function implied by the model will not be of this form. In

practice, as we demonstrate in Section 5, flexible parametric specifications can yield very reasonable

approximations. It also seems likely that one could use a sequence of increasingly flexible parametric

families as the number of observations tends to infinity in a sieve-like manner. For consistency of the

estimator, the complexity of the sieve space must increase with the sample size so that the sieves are

dense in the space of functions being approximated.7

In the Monte Carlo experiments below, the first step is essentially sieve maximum likelihood, where

the difference in choice-specific value functions is approximated by the sieve basis functions. We explore

the behavior of the estimator when increasing the number of basis functions as the sample size increases.

7See Chen (2007) for details on sieve estimation, including sieve MLE.
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Here, a formal analysis of nonparametric identification in the first step is complicated by the nonlinear

and recursive definition of the value function and the corresponding lack of an analytical solution to the

dynamic programming problem. It is not as straightforward as in, for example, the case of linear sample

selection models, where the first step is a conditional mean (Heckman, 1979). In the present setting,

object of interest in the first step is a (potentially) nonlinear function of x and ª (and possibly ¥ if it is not

additively separable). The observable population distribution is a function of only x. However, the joint

transition density of the observed and unobserved states and the distribution of the iid errors are fully

specified up to finite dimensional parameters. Therefore, consistency of the first step depends on solving

the following integral equation for f0:

p(at , xt | a1:t°1, x1:t°1) =
Z

p(at | xt ,ªt ;µ) p(xt | ªt , xt°1, at°1;µ1)ºt |t (dªt )

=
Z∑Z

f0(at , xt ,ªt ,¥t )dG(¥t | xt ,ªt ;µ1)
∏

p(xt | ªt , xt°1, at°1;µ1)ºt |t (dªt ).

The density (or probability) on the left-hand side is potentially observable, G is known, p(xt | ªt , xt°1, at°1;µ1)

is part of the model specification, and ºt |t can be determined given f0 and parameters µ1 for the transition

density of ªt , also part of the model specification.

In many cases, the model places more structure on the problem. For example, in the case of a

dynamic binary choice model under our assumptions, the payoff function is additively separable in the

components of ¥t = ("t0,"t1). Furthermore, ¥t is typically independent of xt and ªt and the distribution

may not depend on µ1. These properties allow us to simplify the problem as

Pr(at = 0 | a1:t°1x1:t )p(xt | a1:t°1x1:t°1)

=
Z∑Z

1{ f̃0(xt ,ªt )+"t0 °"t1 ∏ 0}dG("t0,"t1)
∏

p(xt | ªt , xt°1, at°1;µ1)ºt |t (dªt ).

In practice, the sieve maximum likelihood approach we take does not require explicitly solving the

above integral equation. Rather, we approximate the function f0 (or f̃0) by a member of F . The problem

then becomes choosing Æ and µ1 to maximize the integrated likelihood,
œ

f (at , xt ,ªt ,¥t ;Æ)dG(¥t | xt ,ªt ;µ1)p(xt | ªt , xt°1, at°1;µ1)ºt |t (dªt ;Æ,µ1).

Hence, we maintain the assumption that f0 2F (Assumption 7). As before, structural restrictions such as

additive separability or monotonicity in ¥t or shape restrictions on f0 allow us to further restrict the class

F and possibly to limit focus to a lower-dimensional function f̃0. Identification requires that there be a

unique solution f0, but consistency does not require that there be a unique Æ such that fÆ = f0. We are

only interested in Æ to the extent that estimating Æ allows us to estimate f0 consistently.

As before, we obtain estimates (Æ̂, µ̂1) by maximizing the approximated log-likelihood function:

L̂(Æ,µ1) =
NX

i=1

TX

t=1
ln

"
1
R

RX

r=1
f (ai t , xi t , ª̃r

i t ;Æ) p(xi t | xi ,t°1, ª̃r
i t , ai ,t°1;µ1)

#

,

where f (a, x,ª;Æ) =
R

f (a, y,ª,¥;Æ)dG(¥ | y,ª;µ1) and where ª̃r
i t for r = 1, . . . ,R are the particles drawn at

the prediction stage of the algorithm for the i -th observational unit at period t given the parameters Æ
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and µ1 (i.e., draws from ºR
t |t°1(dªt ;Æ,µ1)). Note that the transition density for ªt , which also depends on

µ1, is used for transitioning the particles and that both of the above densities are used for weighting the

particles. Thus, the evolution of the particle swarm itself also depends on Æ and µ1.

After obtaining Æ̂ and µ̂1, we can simulate the model from any initial condition by sequentially drawing

actions from the estimated policy densities and drawing new states from the estimated transition densities.

This is all we need to carry out the forward simulation procedure of Bajari, Benkard and Levin (2007).

4.2.2. Second Step Estimation

With the first-step estimated policy and transition equations in hand, estimation of the second step

parameters is computationally unchanged from that of Bajari, Benkard and Levin (2007). The primary

conceptual difference is that we have estimated policies and transition equations conditional on the

unobserved state. However, given the estimated policy and transition functions, we can still use forward

simulation to approximate the value functions.

Let æ̂(st ,¥t ) denote the joint policy function associated with the estimates Æ̂. Given values for the

remaining structural parameters µ2, the ex-ante value function implied by these policies is

V̄i (s; æ̂, µ̂1,µ2) = E
∑ 1X

t=0
ØtUi

°
æ̂(st ,¥t ), st ,¥i t ,µ2

¢ ØØØ s0 = s
∏

where the expectation is taken with respect to {st ,¥t }1t=0 under (Æ̂, µ̂1).

The structural parameters µ2 can be estimated as usual by treating the estimated policies æ̂ as the true

policies in the equilibrium conditions,

V̄i (s; æ̂i , æ̂°i , µ̂1,µ2) ∏ V̄i (s;æ0
i , æ̂°i , µ̂1,µ2) 8(i , s,æ0

i ),

and using them to form a minimum distance objective function

Q(µ2) ¥
Z£

min
©
V̄i (s; æ̂i , æ̂°i , µ̂1;µ2)° V̄i (s;æ0

i , æ̂°i , µ̂1;µ2),0
™§2

d H(i , s,æ0
i )

where H is a distribution over the set of possible inequalities—combinations (i , s,æ0
i ). By minimizing this

function, we minimize the sum of squared violations of the equilibrium conditions, motivated by revealed

preference. Under the true parameters µ2, the true policy should always yield higher discounted future

payoffs than any alternative policy æ0
i for each agent i .

In practice, even with fully observed state variables, this procedure is sensitive both to the first step

estimates and the chosen distribution of agent indices, states, and alternative policies. In fact, the

structural parameters may not be identified under Q for some choices of the distribution H (Srisuma,

2010). We explore the performance of this estimator in detail, both with fully observed data and with a

latent state, in the following section.

5. An Application to the Model of Rust (1987)

In this section, we develop an extension of the classic bus engine replacement model of Rust (1987). The

extended model has a two-dimensional continuous state space, rather than a one-dimensional discrete
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state, and one of these states is a serially correlated unobserved state variable. We first use the model to

obtain parameter estimates using the original data using the full-solution estimator described above in

Section 4.1. We then carry out a series of Monte Carlo experiments with true parameter values inspired by

our estimates with the actual data to illustrate both the full-solution and two-step estimators.

The agent has two choices each period, to overhaul the engine of a bus, at = 1, or to do nothing,

at = 0. The two state variables are the observed mileage, xt , and the latent state of the engine, ªt , which is

observed by the decision maker but not by the researcher and may be serially correlated. The time period

is one month and the discount factor is Ø= 0.95.

Here, ªt may represent several unobserved factors. Persistent features of the engine (e.g., unobserved

quality), the bus (e.g., an inexperienced or abusive driver), or the route which it serves (e.g., difficult

terrain, traffic congestion, unobserved changes in the route) may all be relevant. Furthermore, the binary

decision may affect the distribution of ªt and ªt may influence the distribution of xt . For example, a bus

serving a route in an area of the city with heavier traffic (which is unobserved and time-varying) may

accrue mileage at a lower rate than buses serving more rural, longer-distance routes. Another example of

feedback would be unobserved variation in the route itself—perhaps the route is extended, shortened, or

changed completely over the sample period, thus changing the distribution of mileage increments.

First, we specify functional forms for the model primitives: the payoff (cost) function and the transition

densities for x and ª. For simplicity, we assume the cost function is linear:

U (at , st ,"t ,µ2) =

8
<

:
°cx xt ° cªªt +"t ,0 if at = 0,

°c0 +"t ,1 if at = 1.

The structural parameters of interest are the replacement cost, c0, the cost of mileage, cx ,8 and the cost

associated with the latent state, cª. In threshold-crossing models such as this one, the coefficients are only

identified relative to the variance of the error term. We will be considering models where the variance of

the compound error °cªªt +"t ,0 °"t ,1 depends on the parameter cª, and we consider cases where both

cª > 0 and cª = 0. Therefore, we simply report the estimated cost ratios c0/cx and cª/cx , which are costs

relative to the cost of mileage and are comparable across specifications.

When the choice to continue is made in the previous period (at°1 = 0), given xt°1 and ªt , increments

to the observed state, ¢xt = xt °xt°1, follow an exponential distribution with density

p(¢xt | xt°1,ªt , at°1 = 0;µ1) =∏(ªt ,µ1)e°∏(ªt ,µ1)¢xt where ∏(ªt ,µ1) = exp(∏0 +∏ªªt ). (7)

This ensures that the rate parameter ∏(ªt ,µ1) is positive while allowing the unobserved quality of the

engine to influence the mileage transition process. The latent state follows a mean-zero AR(1) process

when at°1 = 0 with p(ªt | xt°1,ªt°1, at°1 = 0;µ) ='(ªt ,Ωªt°1,æ2) where '(·,µ,æ2) is the pdf of the Normal

distribution with mean µ and variance æ2.9 When the engine is replaced in the previous period (at°1 = 1),

the mileage resets to zero and the mileage for period t is exponentially distributed according to the

8Following Rust (1987), we scale mileage, by 0.01 so that all parameters are roughly on the same order of magnitude. All

coefficients on xt should be interpreted in light of this scaling.
9We use the normalization æ= 0.5 and estimate coefficients on ªt in the cost function and transition equation.
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distribution above; the latent state is drawn anew from the stationary distribution: p(ªt | xt°1,ªt°1, at°1 =
1;µ) ='(ªt ,0,æ2/(1°Ω2)).

We must solve for the choice-specific value function v(a, s,µ) both to simulate data and to estimate

the model. Recall that v satisfies v °° (v) = 0, where ° is the functional operator defined in (4). Although

v is an infinite-dimensional object, we can form a smooth approximation to v with only a finite number

of parameters using Chebyshev polynomials (cf. Judd, 1998). See Appendix A for details.

For consistency of the maximum filtered estimator, we consider the entropy condition in Assump-

tion C1 of Theorem 1. In this model, the class Q which generates the likelihood function is

Q =
Ω

exp(∏0 +∏ªªt ) exp[°∏(ªt ,µ1)¢xt ]
exp(v(0, xt ,ªt ,µ)° v(1, xt ,ªt ,µ))

1+exp(v(0, xt ,ªt ,µ)° v(1, xt ,ªt ,µ))

æ
.

We first appeal to the fact that exponentiation is Lipschitz on compact sets. We assume the parameter

space £ is compact and in practice we limit the state variables to compact spaces as described in Ap-

pendix A. That the class of functions Q is Euclidean then follows from Lemmas 2.13 and 2.14 of Pakes

and Pollard (1989) provided that the choice-specific value function v is well-behaved. Norets (2010) gives

conditions for continuity and differentiability of value functions in dynamic discrete choice models.

Finally, we note that for consistency Theorem 1 also requires that the initial distribution of ª0 be

correctly specified. Otherwise, there could be an initial conditions problem when T <1 (Heckman, 1981).

As a robustness check, we intentionally use a misspecified initial distribution for this model in the Monte

Carlo experiments below and find it does not appreciably affect the results.

5.1. Empirical Results

We first estimate the model using the original data of Rust (1987). Keeping in line with the groupings

chosen by Rust (1987), we use the data for bus groups 1–3 (pooled) and group 4. These groupings were

based on heterogeneity tests of the mileage processes between the groups. Table 1 summarizes the data

for the four groups. Groups 1–3 consist of 67 buses, each observed over a period of between 25 and 70

months for a total of 3,931 bus-month observations. Group 4 consists of 37 buses, each observed over

117 months for a total of 4,329 observations. The sample mean and standard deviation of the monthly

mileage increments for each group are also reported along with the number of engine replacements and

the average cost of replacement including labor and parts.

One distinction that will prove important is that the mean monthly mileage increment for group 4

is much smaller than for groups 1–3, but the standard deviation is nearly twice as large, indicating that

there may be more heterogeneity among buses in group 4 than among those in groups 1–3. Rust (1987)

tested for heterogeneity within groups and failed to reject the null hypothesis that the distribution of

mileage increments for buses within groups 1–3 and within group 4 are, respectively, identical within

those groupings. However, he used a discrete-state-space model and based the tests on a multinomial

distribution for discretized mileage transitions with three states (increasing by less than 5,000 miles,

increasing by 5,000–9,999 miles, or increasing by 10,000 miles or more).

Since we use a continuous-state-space model, we carry out a test for heterogeneity by supposing
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that mileage increments are exponentially distributed10 and estimating an unrestricted model with

bus-specific parameters and a restricted model with a common parameter. In other words, this is a

reduced-form test for within-group heterogeneity. For each bus group j = 1,2,3,4 we suppose mileage

increments xi t °xi ,t°1 for each bus i follow an exponential distribution with rate parameter µi j . We also

estimate a homogeneous specification where there is a common rate parameter µ j = µ1 j = ·· · = µN j , j

shared by all N j buses in group j . We then carried out a likelihood ratio test for the null hypothesis

H0 :µ1 j =µ2 j = ·· · =µN j , j for each group j . The results given in Table 2 show that we also cannot reject

the null hypothesis of homogeneity for any particular group, however, there appears to be substantially

more evidence for heterogeneity within group 4 (p = 0.37) than for groups 1–3 (p ∏ 0.93). This is in

contrast to the findings for the discretized mileage processes, for which the respective p-values were

all above 0.85 (Rust, 1987, Table V, p. 1017). Our findings with the continuous mileage data support the

separate analysis of group 4 and also foreshadow the type of heterogeneity reflected by our estimates.

Table 3 reports the estimates obtained using data for bus groups 1–3 and bus group 4. The first row for

each grouping gives the naïve estimates obtained when ignoring the latent state ªt . Then, we report the

estimates obtained using R = 5,000 particles. We also used R = 500 and R = 9,000 with qualitatively very

similar results. Furthermore, the Monte Carlo experiments below show that the estimates can be nearly

unbiased with as few as R = 50 particles.

The estimates were obtained by choosing the initial distribution º0 to be N(0,æ2
0) with æ0 = 2.0. We

also used æ0 = 0.5, æ0 = 1.0, and æ0 = 3.0 with similar results. The estimates were also robust to different

seed values for the underlying random number generator, which result in different filter samples. The

standard errors were calculated using 250 bootstrap replications. The computational times reported are

times in minutes to obtain the “observed” estimate (i.e., not including the bootstrap replications).

Overall, for groups 1–3 we find some evidence of a moderately persistent latent state variable (Ω =
0.684) that primarily affects costs but not mileage increments. For comparison, we consider the effect of

a one-standard-deviation increase in ªt (relative to the stationary distribution, with standard deviation

0.685). Given the estimates, this would decrease the mean of the distribution of mileage increment by 203

miles (1.3%) and increase costs by as much as 1,833 additional miles.

For group 4, we find evidence of a latent state variable that is strongly serially correlated (Ω = 0.982)

and, while it has a relatively smaller effect on costs, it has a larger, positive effect on mileage transitions.

Through our parametrization of the scale parameter of the exponential distribution in (7), when ∏ª is

negative higher values of the latent state ªt decrease ∏(ªt ,µ1) which in turn increases the mean of the

mileage increment. That is, buses with larger values of ªt tend to be driven more miles each month. A

one-standard-deviation increase in ªt (2.65) increases the mean of mileage increments by 3,806 miles

(36%) and increases costs as much as 384 miles.

Because we use a large number of particles for estimating the model with the real data, the computa-

tional times for the particle filter estimator are longer than for the naïve estimator: 38 times longer for

groups 1–3 and 54 times longer for group 4. However, even for group 4 the time is under two hours.

10The exponential distribution was suggested by Rust (1987) for mileage increments in the general description of the model,

before the discrete-state-space model is introduced.
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An alternative to the proposed procedure would be to evaluate the likelihood using Monte Carlo

integration by simulating entire paths ª1:T to approximate the T -dimensional integral in (2). On the other

hand, the particle filtering procedure yields draws of ªt conditional on the observed data and uses them

to approximate the one-dimensional integrals in (3). For both procedures, one needs to propagate the

draws through the transition kernel and evaluate the likelihood for an observation (conditional on both

xt and ªt ). The main additional cost of the particle filter is in the resampling step, which is non-trivial but

also does not dominate the computational time. Therefore, given an equal number of draws the particle

filter uses those draws more effectively.11

Using the results from Table 3, we also perform likelihood ratio tests for the null hypothesis that the

constrained or naïve model is the correct model. For groups 1–3, we cannot reject the constrained model

at any of the usual levels. On the other hand, for group 4 we strongly reject the null. There appear to be

strongly persistent differences in mileage transitions that are important for this group, as well as persistent

differences in costs. This is in line with the reduced form analysis above, where we found more evidence

for heterogeneity in mileage transitions for group 4, as shown in Table 2.

To compare the predictions of the two models, we plot the estimated replacement hazard functions in

Figure 1 for groups 1–3 (panel a) and group 4 (panel b). For groups 1–3, the mean mileage at replacement

is 200,684. For these groups, the hazard between is slightly higher 100,000 and 200,000 miles for the model

including ªt but substantially lower for higher mileages. For group 4, although the hazard for the model

including ªt is slightly larger for mileages over 150,000, the hazards are largely similar as reflected by small

estimated cost parameter cª. Importantly, although the estimated hazards are similar for group 4 other

implications of the model, such as the replacement demand functions, may differ in important ways.

We can also find differences in economic implications due to unobserved heterogeneity when we

use the estimates to derive the demand function for new bus engines. Rust (1987, Table III) reports

the average total replacement costs: $9,499 for groups 1–3 and $7,513 for group 4. We approximate the

demand function by simulating12 the steady state unconditional replacement probability under different

replacement cost values ranging from $1,000 to $15,000. Figure 2 plots the demand functions for groups

1–3 and group 4 using both the naïve estimates and the MFL estimates. The vertical lines indicate the

actual average engine replacement costs reported by Rust (1987) and which are shown in Table 1. The

naïve estimates appear to over-estimate demand at low costs for both groups 1–3 and group 4. Thus,

assuming that the unobservables are independent over time may have non-trivial economic implications.

Allowing for serially correlated unobserved heterogeneity yields similar implications for demand when

costs are above $8,000, but demand is much lower for low replacement cost values. Annual demand is

nearly half for groups 1–3 when the replacement cost is $1,000 and is nearly one-fifth for group 4.

Finally, we note that Norets (2009a) also estimated a similar model that allowed for serially correlated

unobserved heterogeneity using data for bus group 4. He found only moderate evidence for serial

correlation while we find strong serial correlation. Two differences in our models explain the difference.

First, although Norets (2009a) also allows for serially correlated unobserved costs the model considered

11Indeed, we carried out Monte Carlo experiments using MSL using the same model and found appreciable bias with as many

as R = 400 simulated draws while the bias for the MFL estimates was negligible with R = 50 particles.
12We report average replacement probabilities using 101,000 simulated periods and discarding the first 1,000 periods.
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here additionally allows the serially correlated unobservable to manifest itself in the form of heterogeneity

in the distribution of mileage increments. As noted above, there is more evidence of heterogeneity in

the mileage process for group 4 than for other groups. Second, we treat mileage as a continuous variable

while Norets discretized it as Rust (1987) originally did. Rust (1987) previously carried out likelihood ratio

tests for the hypothesis that the discretized mileage process was the same for all buses within a group, but

he found no evidence against this hypothesis for any bus group. However, once we use the continuous

mileage data there is more evidence of heterogeneity.

5.2. Monte Carlo Experiments: Full Solution Estimation

In this section we explore the results of a series of Monte Carlo experiments carried out by estimating the

continuous state model described above using the maximum filtered likelihood estimator. We choose

true parameter values that are based on the estimates above obtained using the data from Rust (1987).

Recall that in addition to estimating the parameters µ, the sequence of distributions of the latent

state for each observational unit (here, for each bus) can be estimated as well. This is illustrated in

Figure 3(a), which displays a single simulation from the continuous state bus engine replacement model

along with the distributions of the unobserved state for each period t (conditional on the observed data

up to period t ) as approximated using the particle filter. The realization of xt is plotted in the lower panel.

The realization of ªt is plotted in the upper panel along with the quantiles of the approximate posterior

distribution. Figure 3(b) plots the same weighted particle swarm as a sequence of distributions. The

parameters used for these simulations are the same those used in the Monte Carlo experiments that

follow: ∏0 = 0.4, ∏ª = 0.3, Ω = 0.8, c0 = 14, cx = 2, and cª = 0.5. The initial proposal distribution here was

taken to be normal with mean zero and standard deviation æ0 = 3.0. Notice how the particle swarm is

initially very dispersed (due to the large value of æ0), but quickly assigns more weight to more relevant

areas of the state space as information from the data is incorporated.

Finally, we generate several datasets consisting of N = 100 bus observations of T = 100 periods each

and estimate the model several ways. Table 4 reports the mean, standard deviation, mean bias, and root

mean squared error of the parameter estimates over 25 replications for several different estimators. The

panels of this table proceed from less information about the latent state at the top to more information at

the bottom. We take the initial distribution of the swarm to be º̃0 = N(0,æ2
0) with æ0 = 0.5. Although the

sample size is fixed throughout, increasing the number of particles results in smaller mean squared errors

which approach the ideal but infeasible case where ªt is observed and treated as data.

In the data generating process, we generate ª0 by drawing from the stationary distribution, N(0,æ2/(1°
Ω2)). The initial distribution º0 is an importance sampling distribution and is intentionally chosen to

be different than the true distribution to illustrate the adaptive behavior of the filtering distribution and

robustness of the estimates to misspecification of the initial proposal distribution. This can be seen in

Figure 3(a), where the effect of the initial distribution º0 diminishes quickly.13

First, Table 4 reports the naïve estimates obtained when ignoring the latent state ªt . In this case we

13We also carried out Monte Carlo experiments using datasets with T = 10 time periods and N = 1,000 cross-sectional units

and found that the estimator also performed well in this setting despite the increased importance of the initial conditions.
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are only estimating the average mileage transition rate ∏0, without capturing the effects of ªt . As such, our

estimates of ∏0 are biased. Similarly, we are overestimating the replacement cost ratio c0/cx by about 21%.

Any welfare calculations or policy implications based on these estimates would suffer from this bias.

The following rows present the maximum filtered likelihood estimates, which perform quite well in

all cases. With only R = 25 particles, the replacement cost ratio estimates and all other parameters have

much smaller bias than the naïve estimator. Estimates of the latent cost ratio are quite good for all values

of R. The bottom panel reports the maximum likelihood estimates obtained when the latent state is

fully observed. It is worth nothing that the estimates with only R = 50 particles have as little bias as the

estimates with fully observed data.

The computational times for the MFL estimates with R = 25 are only 40% longer than for the case

of fully observed data. For R = 100, the times are a little more than twice as long on average. The

computational times for the R = 25 case are about seven times longer than for the naïve estimator, but

the naïve estimator has over eight times more bias in the relative replacement cost. Note that there is

some savings in terms of the total number of functional evaluations required when adding more particles,

since the objective function becomes more smooth and easier to optimize. The trade-off, of course, is that

using more particles makes each functional evaluation more costly.

5.3. Sources of Bias

In this section, we consider the potential sources of bias when ignoring unobserved heterogeneity in

the form of latent, serially correlated state variables. First, we consider two possible sources of bias in

the particular optimal renewal model estimated above: time-varying unobserved heterogeneity in the

distribution of mileage increments (∏ª) and time-varying unobserved costs (cª). Recall that ªt can be

either positive or negative and that it enters the payoff function as °cªªt . We impose the normalization

that cª ∏ 0 so that we interpret positive values of ªt as costs and negative values as benefits. Table 5

contains estimates for the naïve estimator for four population parameter choices which are designed to

illustrate the roles of the two effects in determining the bias from ignoring the unobserved heterogeneity.

When latent costs are important (cª > 0), then the relative replacement cost is biased upward as can

be seen in specifications 1–3 in Table 5. In comparing these cases, we can also see that the bias is affected

by the degree to which the latent state influences the distribution of mileage transitions, since the bias

varies with ∏ª across specifications 1–3. When there are no unobserved costs (cª = 0), then the bias in the

relative replacement cost is zero independent of the value of ∏ª, as seen in specification 4. However, of

course the mileage transition parameter ∏0 (for which the mean increment is 1/∏0) is still biased in this

case and in all cases for which ∏ª 6= 0.

For this specific model, the estimated replacement cost ratio c0/cx tends to be biased upwards. The

source of this bias is similar to selection bias in a static model, but there is dynamic selection here on

unobservables that are time-varying. In particular, we are more likely to observe a bus accrue additional

mileage (the engine is not replaced) when ªt < 0 (i.e., the bus is unobservably less costly). Unobservably

more costly buses tend to have replacements early, so they select out. Therefore, if we could observe ªt in

the sample then the average value would be negative. So, when using the naïve estimator, since observed
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buses are on unobservably less costly (ªt < 0) on average, this is attributed to a lower estimated cost of

mileage and a higher cost of replacement. The overall effect is that on average c0/cx is biased upwards.

Finally, we note that there are several special features of this model: the choice variable is binary and

has a renewal effect, the cost function is linear, the observed state is monotonically increasing unless a

replacement occurs, and the unobserved state variable follows an AR(1) process with Normally-distributed

innovations. Therefore, it seems unlikely that either the directions of the biases found above or the clean

separation of those biases would extend universally to more general models which may not share all of

these features. This ambiguity further underscores the need to allow for non-iid error structures.

5.4. Monte Carlo Experiments: Two-Step Estimation

Here we apply the two step estimator discussed above to estimate the model. Under additive separability,

the policy function æ satisfies the optimality condition

æ(s,",µ) = 0 () v(0, s,µ)+"0 ∏ v(1, s,µ)+"1.

If the iid choice-specific errors are distributed according to the type I extreme value distribution, then the

corresponding choice probabilities are

P (æ(s,",µ) = 0 | s;µ) = exp(v(0, s,µ)° v(1, s,µ))
1+exp(v(0, s,µ)° v(1, s,µ))

and P (æ(s,",µ) = 1 | s;µ) = 1°P (æ(s,",µ) = 0 | s;µ) .

Now, suppose that we can approximate the differences v(0, s,µ)° v(1, s,µ) by f̃ (s;Æ). Then it follows that

we can use a simple logit model to approximate the true policy:

P (æ(s,",µ) = 0 | s,µ) º f (at = 0, st ;Æ) = exp( f̃ (s;Æ))

1+exp( f̃ (s;Æ))
.

We choose F to be the collection of polynomials of the form

f̃ (s;Æ) =Æ1 +Æ2x +Æ3ª+Æ4xª+Æ4x2 +Æ6ª
2 +Æ7x2ª+Æ8xª2 +Æ9x3 +Æ10ª

3. (8)

The parametric specifications for the state transition densities are specified as part of the model

and so we can estimate the parameters µ1 of those densities and the parameters Æ from the parametric

policy approximation using maximum likelihood. As before, we can use the particle filter samples to

approximate the likelihood function.

With estimates (Æ̂, µ̂1) in hand, the approximate policy function is simply æ̂(s,") = 1{ f̃ (s; Æ̂)+"0°"1 ∑ 0}.

Given Æ̂, we know æ̂ and given µ̂1, we know the estimated transition densities. We can therefore use forward

simulation to approximate the ex-ante value function V̄i (s;æ,µ) for any s.

In the second step, we follow Bajari, Benkard and Levin (2007) in using linearity of the value function

to reduce the computational burden. Note that we can write the payoff function as

U (at , st ,"t ,µ2) = (1°at )
°
°cx xt ° cªªt +"t ,0

¢
+at

°
°c0 +"t ,1

¢
.
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For a given policy function at =æ(st ,"t ), the corresponding ex-ante value function for some state s0 is

V̄ (s0;æ,µ) = E
∑ 1X

t=0
ØtU (at , st ,"t ,µ2)

∏
= E

∑ 1X

t=0
Øt °

(1°at )"t ,0 +at"t ,1
¢∏

° c0 E
∑ 1X

t=0
Øt at

∏
° cx E

∑ 1X

t=0
Øt (1°at )xt

∏
° cªE

∑ 1X

t=0
Øt (1°at )ªt

∏
.

We can then approximate V̄ (s0; æ̂, µ̂1,µ2) by simulating the L paths of length T̄ under (Æ̂, µ̂1), with each

path starting at s0. We obtain L sequences {al
t , xl

t ,ªl
t }T̄

t=1 for l = 1, . . . ,L, where T̄ is chosen so that ØT̄ is

sufficiently small. Hence, given first-step estimates (Æ̂, µ̂1), the discounted payoffs can be accumulated to

approximate the ex-ante value function at any state s0 as:

V̂ (s0; æ̂, µ̂1,µ2) = 1
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LX

l=1
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Notice that this approximation to the ex-ante value function is linear in the parameters c0, cx , and cª and

that the summation terms are independent of the parameters. Thus, they can be pre-calculated so that

the value function, and thus the objective function Q(µ2), can be quickly calculated for any value of µ2.

In each of these experiments, we use 2,000 inequalities—state and alternative policy combinations.

For each inequality, we simulate L = 1,000 paths of length T̄ = 250.Alternative policies are based on

perturbations of the first-step parameters Æ1, Æ2, Æ3, and Æ4 of up to ±10%. Specifically, we draw ∞1,

∞2, ∞3, and ∞4 as ∞ j ª U(°Æ j /10,Æ j /10) for j = 1, . . . ,4 and perturb the threshold crossing condition by

the amount ∞1 +∞2xt +∞3ªt +∞4xtªt . This is equivalent to using the policy function where the first four

parameters are Æ̃1, Æ̃2, Æ̃3, Æ̃4, with Æ̃ j = Æ j +∞ j , and where the remaining parameters are unchanged.

Initial states for each inequality were drawn uniformly over the state space.

The results of our experiments are summarized in Tables 6 and 7. In Table 6, we report the means

and standard deviations of the first step estimates while considering the sensitivity to the choice of ∑,

the dimension of the polynomial in (8) used in the first step. We consider ∑= 3,4,6,8,10 where for ∑= 3

only the first three terms are included and for ∑= 10, all terms are included. Then, Table 7 reports the

corresponding second step estimates for each ∑.

Note that the parameters of interest are ∏0, ∏ª, and Ω from the first step, shown in Table 6, and the

ratios c0/cx and cª/cx from the second step, shown in Table 7. The first step parameters Æ1, . . . ,Æ10 are not

of direct interest but are a means to obtaining estimates of the choice probabilities as a function of x and ª.

To ensure consistency of the second step estimates, the predicted choice probabilities must be consistent.

It is useful to understand how much variation is inherent in the Bajari et al. (2007) procedure and

how much is due to the addition of the particle filter. Therefore, for all experiments we compare the

estimator with R = 100 particles to the hypothetical case where both x and ª are fully observed by the

econometrician. With the exception of ∑= 8, the difference in the mean estimates is small but the standard

deviation of the particle filter estimates is larger, as expected.
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In addition, we also present values of the infeasible second-step estimates obtained using the true

policy functions (note that there is no data involved in this stage, so the first step is bypassed completely).

In this case, the true policy function is obtained by actually solving the model and is then used to simulate

the ex-ante value function and form the minimum distance objective function. That there is nearly

no bias in this case indicates that any bias present with the estimated policy functions is due to first

step estimation error. Importantly, for all values of ∑—even the obviously misspecified linear case with

∑= 3—there is less bias in the ratios c0/cx and cª/cx is smaller than for the naïve estimator (see Table 4).

Our overall impression from these results is that the two-step estimator behaves well on average and

although the estimates are noisier than the full-solution maximum likelihood estimates, they are still

preferable to the naïve estimates. For larger values of ∑, the approximation error from including the higher

order power series terms seems to be a relatively large component of the standard deviations. However,

using orthogonal polynomials such as Hermite, Laguerre, or Chebyshev polynomials might yield better

results. The second-step estimates using the true policy function are quite good, indicating that our

choices of T̄ , L, and the form of our alternative policy perturbations are reasonable. In large-scale discrete

time dynamic games, where full-solution estimation is infeasible, the additional noise may be a small

price to pay for the ability to obtain estimates that control for the latent state variable.

6. Conclusion

This paper has shown that several common dynamic microeconomic models with serially correlated

latent state variables can be written in a nonlinear state space form, to which we can apply a particle

filter to approximate the distribution of the latent state. We have proposed two estimators, a full-solution

maximum filtered likelihood estimator in the spirit of the nested-fixed point estimator of Rust (1987) and

a two-step method based on the estimator of Bajari, Benkard and Levin (2007). In both cases, applying

a particle filter is straightforward and only requires evaluating and drawing from densities that arise

naturally as part of the model specification. We then apply the full-solution estimator to generalized

version of the bus engine replacement model of Rust (1987) using Rust’s original dataset and find strong

evidence of serially correlated latent state variables in group 4 and moderate evidence for groups 1–3. We

then provide Monte Carlo evidence to highlight the performance of both estimators.

A. Computational Details of the Empirical Model

This section contains computational details of the empirical model used for the Monte Carlo experiments

and empirical results in Section 5. In all cases, we use degree fourteen Chebyshev polynomials to approxi-

mate the value function (in each dimension) and seventh-order quadrature to approximate the double

integral in the functional operator °, defined in (4), in line with the procedures described below.

A.1. Chebyshev Approximation to v(a, s,µ)

Let Tk denote the k-th degree Chebyshev polynomial of the first kind, defined on the interval [°1,1]. The

values Tk (x) can be calculated using the trigonometric identity Tk (x) = cos(k arccos x) or through the
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recurrence relation T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk (x)°Tk°1(x). Let Hk denote the set of roots of the

k-th degree Chebyshev polynomial of the first kind,

Hk =
Ω

cos
µ
º

2
2 j °1

k

∂
: j = 1, . . . ,k

æ
,

and let H [a,b]
k denote the corresponding roots scaled to the [a,b] interval,

H [a,b]
k =

Ω
x +1

2
(b °a)+a : x 2Hk

æ
.

For each a 2A and µ, we approximate v(a, x,ª,µ) by a function v√(a, x,ª) over the region [x, x]£ [ª,ª]

by taking products of Chebyshev polynomials of degree K °1 in each dimension:

v√(a, x,ª) ¥
KX

i=1

KX

j=1
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i j Ti°1
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2

x °x

x °x
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2
ª°ª

ª°ª
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!

,

where the √ subscript denotes dependence on a collection™ of K £K coefficient matrices™a =
≥
√a

i j

¥
for

each choice. Note that there is a different matrix of coefficients for each choice a, corresponding to the

different functions v(a, ·, ·,µ). The dependence of coefficient matrices™a on µ is implicit. Letting x̃ and ª̃

denote the values of x and ª scaled from [x, x]£ [ª,ª] to [°1,1]2, we can write this more succinctly as

v√(a, x,ª) =
KX

i=1

KX

j=1
√a

i j Ti°1(x̃)T j°1(ª̃).

Intuitively, for a given µ one wants to choose the values √a
i j in order to make the difference between

v√(a, x,ª) and °(v√)(a, x,ª) small in some sense over the entire state space. We choose the coefficients

that minimize the squared residuals over the set of Chebyshev roots for a given µ:

Qµ(™) =
X

a2A

X

(x,ª)2H
[x,x]
k £H

[ª,ª]

k

£
v√(a, x,ª)°°µ(v√)(a, x,ª)

§2 . (9)

Assume for a moment that we can evaluate ° numerically. Then, for each µ the value of™which minimizes

Qµ(™) is used to approximate v(·, ·, ·,µ) in the log-likelihood function. In the Monte Carlo experiments

and application, we use Newton’s method to solve for the coefficients™, which are zeros of (9).

A.2. Evaluating °

To evaluate ° numerically in practice, we use quadrature to approximate the required double integral. In

particular, we use Gauss-Laguerre quadrature for the integral with respect to the exponential distribution

(conditional on ª) and Gauss-Hermite quadrature for the integral with respect to the normal distribution.

Gauss-Laguerre quadrature of order n provides abscissæ ≥i and weights !i for i = 1, . . . ,n for the

following linear approximation:

Z1

0
e°≥'(≥)d≥º

nX

i=1
!i'(≥i ).
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This form of quadrature is useful for approximating the expectation of a nonlinear function of an

exponentially-distributed random variable. If X is an exponential random variable with rate param-

eter ∏, then the expectation of f (X ) can be approximated via a simple transformation. Let ≥= ∏x and

'(·) = f (·/∏) (and note that d≥=∏d x). Then, by a change of variables,

E[ f (X )] =
Z1

0
∏e°∏x f (x)d x =

Z1

0
e°≥'(≥)d≥º

nX

i=1
!i f (≥i /∏).

Similarly, Gauss-Hermite quadrature provides weights !i and abcissæ ≥i for integrals of the form:
Z1

°1
e°≥

2
'(≥)d≥º

nX

i=1
!i'(≥i ).

If X is a normally distributed random variable with mean µ and variance æ2, then we can approximate

the expectation of f (X ) using quadrature by applying the transformation ≥ = (x °µ)/(
p

2æ), '(≥) =
f (µ+

p
2æ≥)/

p
º, and thus, d≥= d x/

p
2æ2. Then,

E[ f (X )] =
Z1

°1

1
p

2ºæ2
e°

(x°µ)2

2æ2 f (x)d x º
nX

i=1

!ip
º

f (µ+
p

2æ≥i ).

A.3. Optimization

Simulated Annealing was used for optimization for the maximum likelihood estimates and for the first step

sieve maximum likelihood policy estimation. Initial step sizes and temperatures were chosen separately

for each estimator, depending on the magnitude of the objective functions and the difficulty in finding

the optimum. Some reported runtimes are long due to carrying out a thorough search requiring many

thousands of functional evaluations. For the second step minimum distance objective function, we use

the Levenberg-Marquardt algorithm for nonlinear least squares.

A.4. Computational Times

Estimation using the actual data and for Monte Carlo experiments was carried out on servers equipped

with dual Intel Xeon X5670 or dual X5690 processors, each with six physical cores. Therefore, each server

has a total of 12 physical processor cores. The particle filtering routine was carried out in parallel at the

“market” level: the log likelihoods for individual buses were calculated on separate processor cores.

B. Proof of Theorem 1

Consider the following decomposition:

L̂(µ)°L(µ)° L̂(µ0)+L(µ0) = PN ln ĥ(·,µ)°P lnh(·,µ)°PN ln ĥ(·,µ0)+P lnh(·,µ0)

= (PN °P )[lnh(·,µ)° lnh(·,µ0)]| {z }
¥A

+PN [ln ĥ(·,µ)° ln ĥ(·,µ0)° lnh(·,µ)+ lnh(·,µ0)]| {z }
¥B

We show below that both terms A and B converge uniformly in probability to 0. Uniform convergence

of L̂N ,R (µ)° L̂N ,R (µ0) to L(µ)°L(µ0) follows from the triangle inequality. Consistency of the maximum

filtered likelihood estimator µ̂N ,R follows from Theorem 2.1 of Newey and McFadden (1994).
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By Assumption C1 and Lemmas 2.14(i) and 2.15 of Pakes and Pollard (1989) the class of functions

H = {lnh(·,µ)° lnh(·,µ0) : µ 2£} is Euclidean for the envelope H = ln H ° lnh(·,µ0) which is integrable

under Assumption C2. Therefore, by Lemma 2.8 of Pakes and Pollard (1989) sup£ |A|
as! 0.

By Taylor’s theorem,

sup
£

|B |∑ 2sup
y,µ

ØØln ĥ(y,µ)° lnh(y,µ)
ØØ= 2sup

y,µ

ØØØØØ
ĥ(y,µ)°h(y,µ)

h§

ØØØØØ

for some h§ between ĥ(y,µ) and h(y,µ). By Assumption C2,

2sup
y,µ

ØØØØØ
ĥ(y,µ)°h(y,µ)

h§

ØØØØØ∑ 2M sup
y,µ

ØØĥ(y,µ)°h(y,µ)
ØØ .

Recall the definitions of ĥ and h and define ht and ĥt as follows:

h(y1:T ,µ) =
TY

t=1
S y1:t q(·, yt°1, yt ,µ) ¥

tY

t=1
ht (y1:T ,µ),

ĥ(yi ,1:T ,µ) =
TY

t=1
S yi ,1:t

R q(·, yi ,t°1, yi ,t ,µ) ¥
tY

t=1
ĥt (y1:T ,µ).

Since the functions in Q are bounded, uniform convergence of each ĥt to ht implies uniform convergence

of the product, ĥ, to the product of the uniform limits, h.

Since the class Q is Euclidean, there exist positive constants C and V which do not depend on P

such that the L1(P ) covering number satisfies N (",Q,L1(P )) ∑C"°V for all " 2 (0,1]. Since Q is a square-

integrable envelope, it follows that the L2(P ) covering number is bounded as N (",Q,L2(P )) ∑C 22V "°2V

for all " 2 (0,1] (Nolan and Pollard, 1987, p. 789). Hence the uniform L2 covering number is bounded:

N (",Q) ¥ supµN (",Q,L2(µ)) <1. We can now apply Theorem 5 of Del Moral and Ledoux (2000) to

establish that, for each t = 1, . . . ,T , supy,µ

ØØĥt (y,µ)°ht (y,µ)
ØØ as! 0 as R !1.
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TABLE 1. Summary of Bus Groups from Rust (1987)

Sample Size Mileage Replacements

Bus Number of Months Total Average

Group Buses Observed Obs. Mean S.D. Count Cost§

1 15 25 375 4196.29 1148.47 0 –

2 4 49 196 3106.03 937.74 0 –

3 48 70 3360 3708.45 1235.07 27 –

1–3 67 25–70 3931 3552.63 1432.76 27 $9,499

4 37 117 4329 3192.45 2306.53 33 $7,513

§Note: Replacement costs are only available for groups 1–3 combined.
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TABLE 2. Within-Group Heterogeneity Tests

Group 1 Group 2 Group 3 Group 4

Buses 15 4 48 37

Bus-Month Observations 356 192 3138 4229

Restricted Log Likelihood -864.05 -409.60 -7250.71 -9137.98

Unrestricted Log Likelihood -866.58 -409.37 -7248.52 -9118.96

LR Statistic 5.04 0.46 4.37 38.05

Degrees of Freedom 14 3 47 36

Marginal Significance Level 0.99 0.93 1.00 0.37

TABLE 3. Estimates for Bus Groups 1–3 and Group 4 of Rust (1987)

Estimator LL ∏0 ∏ª Ω c0/cx cª/cx Minutes

Groups 1-3

Naïve Estimator -2662.88 0.343 – – 10.363 – 2

(0.012) – – (0.905) –

Particle Filter (R = 5,000) -2660.26 0.341 0.007 0.684 12.025 0.535 76

(0.013) (0.005) (0.093) (1.834) (0.252)

Observations 3931

LR Statistic (df = 3) 5.242

Marginal Signficance Level 0.155

Group 4

Naïve Estimator -2393.53 0.477 – – 15.389 – 2

(0.013) – – (1.413) –

Particle Filter (R = 5,000) -2338.98 0.439 -0.048 0.982 11.464 0.029 107

(0.023) (0.038) (0.168) (2.657) (0.573)

Observations 4329

LR Statistic (df = 3) 109.107

Marginal Signficance Level 0.000
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TABLE 4. Maximum Filtered Likelihood Estimates: Monte Carlo Results

Parameters Time Per Replication

Estimator ∏0 ∏ª Ω c0/cx cª/cx Total (m) Per Eval. (s) Eval.

Naïve Mean 0.233 – – 8.485 – 1 0.046 1849

S.D. 0.018 – – 0.326 –

Bias -0.167 – – 1.485 –

RMSE 0.168 – – 1.521 –

MFL (R = 25) Mean 0.381 0.289 0.810 7.315 0.231 7 0.052 8353

S.D. 0.038 0.035 0.036 0.527 0.051

Bias -0.019 -0.011 0.010 0.315 -0.019

RMSE 0.043 0.037 0.038 0.614 0.055

MFL (R = 50) Mean 0.391 0.299 0.802 6.990 0.244 9 0.070 7585

S.D. 0.031 0.030 0.028 0.405 0.046

Bias -0.009 -0.001 0.002 0.010 -0.006

RMSE 0.033 0.030 0.029 0.406 0.046

MFL (R = 100) Mean 0.389 0.294 0.801 6.824 0.248 11 0.099 6985

S.D. 0.021 0.023 0.026 0.534 0.035

Bias -0.011 -0.006 0.001 0.176 -0.002

RMSE 0.024 0.024 0.026 0.562 0.035

MFL (R = 200) Mean 0.393 0.306 0.790 6.980 0.262 18 0.157 6937

S.D. 0.017 0.027 0.031 0.461 0.045

Bias -0.007 0.006 -0.010 0.020 0.012

RMSE 0.019 0.028 0.032 0.461 0.046

MFL (R = 400) Mean 0.390 0.299 0.800 6.987 0.251 28 0.271 6265

S.D. 0.021 0.020 0.015 0.410 0.020

Bias -0.010 -0.001 -0.000 0.013 0.001

RMSE 0.023 0.020 0.015 0.410 0.020

Observed ªt Mean 0.400 0.299 0.801 6.924 0.249 5 0.050 5977

S.D. 0.011 0.007 0.006 0.220 0.011

Bias 0.000 -0.001 0.001 -0.076 -0.001

RMSE 0.011 0.008 0.006 0.233 0.011
Note: Reported are the mean, standard deviation, mean bias, and root mean squared error over 25 replications. Computational

times are average minutes per replication, average seconds per functional evaluation, and average functional evaluations.
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TABLE 5. Sources of Replacement Cost Ratio Bias

Specification Parameters ∏0 ∏ª Ω c0/cx cª/cx

Population 0.400 0.300 0.800 7.000 0.250

1. Baseline Naïve Estimation 0.233 – – 8.485 –

(0.018) – – (0.326) –

Population 0.400 0.000 0.800 7.000 0.250

2. ∏ª = 0 Naïve Estimation 0.400 – – 8.163 –

(0.011) – – (0.334) –

Population 0.400 -0.300 0.800 7.000 0.250

3. ∏ª < 0 Naïve Estimation 0.341 – – 8.062 –

(0.013) – – (0.302) –

Population 0.400 0.300 0.800 7.000 0.000

4. cª = 0 Naïve Estimation 0.283 – – 6.963 –

(0.018) – – (0.188) –
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TABLE 6. Two-Step Estimator: First Step Monte Carlo Results

Structural Parameters (µ̂1) Polynomial Coefficients (Æ̂)

First-Step Estimator ∏0 ∏ª Ω 1 x ª xª x2 ª2 x2ª xª2 x3 ª3 Minutes

Population 0.400 0.300 0.800 – – – – – – – – – – –

∑= 3, N = 50 – –

MFL (R = 100) 0.393 0.306 0.783 8.043 -10.303 -1.323 – – – – – – – 10

(0.026) (0.028) (0.032) (0.968) (1.609) (0.320) – – – – – – –

Observed ªt 0.401 0.298 0.801 8.197 -10.740 -1.342 – – – – – – – 1

(0.013) (0.012) (0.008) (0.417) (0.955) (0.106) – – – – – – –

∑= 4, N = 100 – –

MFL (R = 100) 0.393 0.309 0.787 7.881 -10.073 -1.174 -0.347 – – – – – – 18

(0.021) (0.024) (0.028) (0.785) (1.088) (0.293) (0.053) – – – – – –

Observed ªt 0.400 0.299 0.801 8.011 -10.383 -1.225 -0.374 – – – – – – 1

(0.014) (0.007) (0.008) (0.282) (0.613) (0.065) (0.055) – – – – – –

∑= 6, N = 400 – –

MFL (R = 100) 0.386 0.300 0.796 10.885 -21.596 -1.719 -0.001 10.253 0.022 – – – – 38

(0.014) (0.013) (0.015) (1.853) (4.402) (0.454) (0.023) (2.283) (0.014) – – – –

Observed ªt 0.399 0.299 0.800 9.534 -18.344 -1.364 0.015 8.567 -0.003 – – – – 1

(0.008) (0.004) (0.005) (0.243) (0.864) (0.056) (0.034) (0.767) (0.013) – – – –

∑= 8, N = 1600 – –

MFL (R = 100) 0.393 0.299 0.800 10.946 -21.489 -1.623 -0.689 10.073 0.023 0.243 -0.047 – – 163

(0.014) (0.011) (0.012) (2.249) (4.322) (0.526) (1.196) (2.512) (0.014) (0.408) (0.039) – –

Observed ªt 0.400 0.300 0.800 9.785 -18.778 -1.560 0.363 8.618 0.023 0.012 -0.036 – – 3

(0.007) (0.003) (0.003) (0.426) (1.533) (0.153) (0.465) (1.259) (0.008) (0.275) (0.009) – –

∑= 10, N = 6400 – –

MFL (R = 100) 0.393 0.307 0.786 15.839 -25.788 -8.904 8.256 2.464 2.657 -2.671 -1.775 6.472 -0.271 912

(0.011) (0.013) (0.017) (6.702) (10.735) (5.268) (6.624) (20.870) (1.190) (4.266) (1.064) (13.346) (0.137)

Observed ªt 0.400 0.299 0.799 12.939 -32.347 -4.745 8.375 25.728 1.010 -4.135 -1.336 -5.949 -0.087 15

(0.005) (0.004) (0.004) (1.715) (6.605) (2.053) (5.556) (9.791) (0.635) (3.487) (0.884) (6.248) (0.056)

We let the sample size increase with ∑ as N = 50£2∑°3.
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TABLE 7. Two-Step Estimator: Second Step Monte Carlo Results

Structural Parameters (µ̂2)

Sample Size First-Step Estimator c0/cx cª/cx Minutes§

Population 7.000 0.250 –

∑= 3, N = 50 MFL (R = 100) 6.578 0.250 1

(0.421) (0.048)

Observed ªt 6.461 0.234 1

(0.311) (0.021)

∑= 4, N = 100 MFL (R = 100) 6.725 0.259 1

(0.309) (0.050)

Observed ªt 6.653 0.256 1

(0.200) (0.014)

∑= 6, N = 400 MFL (R = 100) 7.528 0.319 1

(0.274) (0.029)

Observed ªt 7.458 0.308 1

(0.255) (0.012)

∑= 8, N = 1600 MFL (R = 100) 7.737 0.316 1

(0.416) (0.031)

Observed ªt 7.151 0.288 1

(0.234) (0.016)

∑= 10, N = 6400 MFL (R = 100) 7.293 0.305 1

(0.457) (0.053)

Observed ªt 6.699 0.249 1

(0.247) (0.015)

∑=1, N =1 True Policy 6.976 0.260 1

(0.041) (0.003)
§Computational times include forward simulation of the ex-ante value functions and minimization of Q to determine µ̂2.
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