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Abstract. In models of strategic interaction, there may be important order of entry effects

if one player can credibly commit to an action (e.g., entry) before other players. If one esti-

mates a simultaneous-move model, then the move-order effects will be confounded with the

payoffs. This paper considers nonparametric identification and simulation-based estimation

of sequential games of complete information. Relative to simultaneous-move games, these

models avoid the problem of multiple equilibria and require fewer payoff normalizations. We

apply the estimator in several Monte Carlo experiments and to study entry-order effects using

data from the airline industry.
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1. Introduction

There has been much recent work on identification and estimation of static models of strategic

interaction. Static models can be classified according to the timing of players’ moves, which

can either be simultaneous or sequential, and the informational assumptions, where players

have either complete or incomplete information about the payoffs of their rivals. These two

dimensions of differentiation are shown in Table 1.

Most previous work involving structural econometric models of static games has focused on

games where players move simultaneously (panels B and D of Table 1). Bresnahan and Reiss

∗I am grateful to Han Hong, Paul Ellickson, and Arie Beresteanu for many helpful discussions and to the members

of the Duke Applied Microeconometrics Reading Group for useful feedback. This work was supported in part by an

allocation of computing time from the Ohio Supercomputer Center.
†This paper is a revision of a working paper whose first draft appeared in October 2006.
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(1991), Berry (1992), Tamer (2003), Ciliberto and Tamer (2009), and Bajari, Hong, and Ryan (2010),

among others, have studied simultaneous-move games of complete information in a static setting

(panel B). In contrast, Bajari, Hong, Krainer, and Nekipelov (2010b) considered simultaneous-

move games under the assumption of incomplete information (panel D). A notable exception

is Einav (2010), who considered a static, incomplete-information game with sequential moves

(panel C). In contrast, this paper focuses on sequential-move games of complete information

(panel A), which have received no attention in the literature to date to the author’s knowledge.

Timing of Moves

In
fo

rm
at

io
n

A.
Sequential moves,

B.
Simultaneous moves,

Complete information Complete information

C.
Sequential moves,

D.
Simultaneous moves,

Incomplete information Incomplete information

TABLE 1. Classification of Empirical Models of Static Games

From the perspective of estimation, simultaneous-move games have the unfortunate prop-

erty that they give rise to multiple Nash equilibria. This makes estimation of the structural

parameters difficult and so the literature has focused on ways to overcome the issues that arise.

An early solution proposed by Bresnahan and Reiss (1991) and Berry (1992) was to consider a

reduced outcome space over which there is a unique equilibrium outcome. They estimated entry

models using information on outcomes only in terms of the number of players that enter rather

than the identities of the players that enter. This permitted their models to be estimated but

entailed a loss of information.

Tamer (2003) later showed that in a simple 2×2 simultaneous-move game, the parameters

can be point identified even when there are multiple equilibria provided that a player-specific

variable with large support is available. Bajari et al. (2010) considered joint estimation of the

payoffs and equilibrium selection mechanism in models with many players. Ciliberto and

Tamer (2009) developed a partially identified approach which avoids specifying the equilibrium

selection mechanism and estimates the identified of structural parameters.

In contrast, we show that empirical models based on sequential games of complete in-

formation have an almost-surely unique subgame perfect Nash equilibrium (SPNE) and do

not suffer from the problems of multiplicity that plague estimation of simultaneous-move

games. Furthermore, the equilibrium can be computed very easily, which is far from the case in

simultaneous-move games (Bajari, Hong, Krainer, and Nekipelov, 2010a; Bajari, Chernozhukov,

Hong, and Nekipelov, 2007). Finally, counterfactual experiments can be carried out using the

model without concern for the complications of multiple equilibria.

In their classic paper, Bresnahan and Reiss (1991) develop an empirical model of static
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discrete games of complete information and consider the estimation of both simultaneous- and

sequential-move games in their framework. They briefly consider a two-player sequential-move

entry game and note that uniqueness of the equilibrium seems to favor using sequential-move

games over simultaneous-move games but that the apparent need to specify the order of moves,

with little guidance on how to do so, is a drawback. In this paper, we show that the researcher

does not need to specify the order of moves, rather, it can be treated as stochastic with the

distribution of possible orderings being an unknown of interest.

We note that specifying a sequential-move game is different than specifying a simultaneous-

move game with a specific equilibrium selection rule. Berry (1992) took the latter approach in

estimating a simultaneous-move model of airline entry. The existence of multiple equilibria, due

in large part to firm-heterogeneity, substantially complicates estimation of the model. In order

to select a particular equilibrium, Berry assumes that firms enter in order of profitability. Gayle

and Luo (forthcoming) use non-nested model selection tests (Vuong, 1989) to assess various

order-of-entry assumptions in an entry game between McDonald’s and Burger King. Although

similar in spirit, the difference is that the sequential-move counterpart has a unique equilibrium

for any order of moves and one can estimate the distribution of the order of moves as opposed to

specifying that a particular equilibrium (selected implicitly by an order assumption) is played.

In addition to the technical advantages mentioned so far, sequential games can also shed

light on the nature of competition in industry studies by capturing phenomena such as market

power and entry deterrence. If early-movers have advantages in a market but one estimates a

simultaneous-move game, then the early move advantage could be mistakenly attributed to

higher entry costs or overly large competitive effects. Thus, ignoring order of entry effects can

result in biased structural parameter estimates.

In this paper, we consider the case where the order of moves is not observed by the econo-

metrician (although is known by the players) and treat it as an object of interest along with the

payoff functions. This is by far the leading case since players in the model can typically make

actions that cannot easily be observed by the researcher. For example, in a model of entry it is

easy to observe when a firm has entered but difficult to know precisely, in terms of timing, when

a firm decided not to enter. In other words, even if we are able to observe the order of entry we

may not be able to discern the order of moves, which is the full sequence of decisions about

whether to enter the market or remain out.

In our identification analysis, we show that even in very simple entry models the observable

distribution of outcomes provides information about the order of moves. We compare in detail

the role of the sequential- or simultaneous-move structure of the game in determining which

payoffs can be identified. Additionally, we examine the nonparametric identification of the

model and the role of payoff and order-selection exclusion restrictions.
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In previous work on sequential games, Einav (2010) estimated a model of movie release

timing under the assumption of incomplete information. He showed that the incomplete

information assumption and a parametric assumption about the distribution of unobservables

yields an analytic form for the likelihood function conditional on the order of moves. He cited an

intractable likelihood function as one reason to prefer the assumption of incomplete information

over that of complete information. However, complete information models may be preferable

in cases where players have accurate information about the payoffs of their rivals, for example,

due to a high level of industry experience, transparency, or to long-term, repeated interactions

with the same rivals. Furthermore, we show that despite the intractable likelihood function, the

complete information model can be estimated using simulation methods. This issue is certainly

not unique to sequential games: Berry (1992), Bajari et al. (2010), and others have proposed the

use of simulation for integration in simultaneous-move games as well.

A second issue of interest is the distribution of the order of moves. When the order of moves is

unobserved the model is incomplete unless an assumption is made about its distribution. Einav

ultimately assumed that the order of moves is uniformly distributed (i.e., that each of the N !

possible permutations of the N players is assigned equal probability). However, this assumption

may not be innocuous and one may be interested in estimating the distribution of the order

of moves. Relative to Einav, we consider games with a different informational assumption, we

formally analyze identification of the model, including the distribution of the order of moves,

and we apply our model to study order of entry effects in a different industry. Therefore, the

methods we propose fill a gap in the literature (represented by panel A of Table 1) and allow

researchers to choose from the full menu of simultaneous or sequential games of complete or

incomplete information as needed.

In Section 2, the basic stochastic sequential game framework is developed. Section 3 es-

tablishes a minimal set of normalizations that must be imposed and considers nonparametric

identification of the remaining free mean payoff values. Section 4 introduces our proposed

simulation-based estimator using maximum simulated likelihood (MSL) (Lerman and Manski,

1981; Gouriéroux and Monfort, 1991; Lee, 1992).1 Section 5 discusses a set of Monte Carlo ex-

periments based on a simple two-player entry model. Finally, Section 6 applies the proposed

estimator to study entry into city-pair markets in the airline industry.

2. Econometric Models of Sequential Games

Sequential games are games of perfect information, meaning that at each stage, each player

observes the moves of all preceding players but not the moves of subsequent players. In such

1The method of simulated moments (MSM) (McFadden, 1989) can also be used, as we discuss in Appendix A.
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games, every information set is a singleton and players know precisely where they are in the

game tree at each move. If the players have complete information, meaning that the payoffs

(including the unobservables) are common knowledge to all players, then a unique SPNE can be

found through backwards induction. In this paper we consider the properties of econometric

models based on such games.

Sequential games provide additional flexibility relative to simultaneous games by allowing

for order of move effects. Depending on the shape of the reaction functions, there may be

advantages to moving first or moving last (Gal-Or, 1985). A well-known result of the classic

Stackelberg-Cournot model is that the firm that chooses it’s output first will earn higher profits.

Yet, in the Stackelberg-Bertrand variation of the model in which firms choose prices instead of

quantities, the follower can undercut the price of the leader to earn higher profits. Models with

heterogeneous firms yield even more potential patterns of interaction and move-order effects.

Because of the possibility of either first- or last-mover advantage in sequential move games,

simultaneous-move games may seem preferable since they do not give market power to any

particular player. Yet, allowing some firms to have market power due to move-order effects (while

also not imposing that any firm has such power) may be important in the industry of interest

and therefore is a useful feature for empirical models to possess. Otherwise, if one does not allow

for move order effects they become confounded with the direct competitive effects on profits in

a complicated way, leading to biased estimates of the model parameters.

In this section, we propose a framework for modeling strategic interaction as a sequential

game without making strict assumptions about the order of moves. One can estimate the

distribution of the order of moves in an attempt to determine which firms are more or less likely

to lead or follow and thus enjoy such market advantages (or fail to enjoy them, as the case may be

for the model at hand). This is possible because the conditional outcome distribution provides

information about the order of moves in the sense that certain outcomes are more likely under

some orderings than others. For example, if there are two identical players in a Stackelberg

model then we could identify the first mover with a high probability by choosing the player with

the highest observed output.

2.1. The Basic Model

Suppose that the econometrician observes M independent instances of some economic interac-

tion that can be modeled as a sequential game of complete information (e.g., entry decisions

in geographically separate markets). Each observation m = 1, . . . , M will be referred to as a mar-

ket. Each market consists of N players indexed by i = 1, . . . , N and each player can choose one
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action ai ∈ Ai , where Ai = {0,1, . . . , Ji −1} is a finite set representing player i ’s choice set.2 A

profile of actions of all players a = (a1, . . . , aN ) is called an outcome and the set of all outcomes is

A =A1 ×·· ·×AN . Players receive payoffs ui (a) for each outcome a ∈A .

In many cases, for simplicity, we will consider the case where all players have the same

number of choices (i.e., Ji = J for all i ). Furthermore, we assume that the identities of the players

are the same across markets. Identity may be taken literally (e.g., a particular airline) or it may be

thought of more broadly as a category (e.g., a low cost carrier, a chain store, etc.).

In sequential games, unlike simultaneous games, the order of moves must be specified to

complete the model. Each possible ordering is a permutation of the numbers 1, . . . , N , of which

there are N ! possible permutations. It is customary to denote the initial stage, corresponding

to the root node of the game tree, as stage 0. Hence, the last player moves at stage N −1 and

the outcome of the game can be thought of as stage N . Let o : {0, . . . , N −1} → {1, . . . , N } denote

a particular order of moves, where o(k) is the index of the player who moves at stage k. This

ordering is a random variable O with support O where O is the set of all N ! permutations of N

players. We also use the inverse permutation o−1(i ) to denote the stage at which player i moves.

Formally speaking, the model is an extensive form game with N stages. At each stage, only

one player moves and each player moves exactly once during the course of the game. Each

information set consists of a single node. Let hk = (ao(0), ao(1), . . . , ao(k−1)) denote the history of

actions at the beginning of stage k and let H k denote the set of possible stage-k histories, where

H 0 ≡∅.

It is important to distinguish between histories and outcomes. When speaking of a particular

history, it is implicitly assumed that the order of moves is known. On the other hand, the order

of moves is irrelevant in an outcome, which is simply a profile of actions listed in the order in

which players were labeled. This labeling is arbitrary.

Players move at information sets. However, since there is a unique history of actions leading

to each information set we can equivalently express a strategy for player i (moving at stage

k = o−1(i )) as a function si : H k →Ai which maps H k , the set of possible stage-k histories, to

Ai , player i ’s choice set. Thus, a strategy must specify a unique action for each possible history

leading up to player i ’s move. The set of possible strategies for player i is Si = {si : H k →Ai }.

There is no history for the leading player to consider, so we define H 0 =∅. A strategy for this

player is simply an action, so So(0) =Ao(0). For each h ∈H k , there are J possible actions and

2In general multistage games, players may move simultaneously at each stage and the choices available to each

player depend on the history of previous actions of all players. In this situation player i ’s choice set at stage k is

Ai (hk ) for some history hk . However, in this framework, only one player moves at each stage (the other players

have empty choice sets). Each player moves exactly once and Ai cannot depend on the history of moves or the

order of play.
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there are J k histories in H k and therefore J · J k = J k+1 possible strategies for player o(k).

Sequential games have well-known and attractive equilibrium properties. For our purposes,

the most important feature is given by the following theorem. See Zermelo (1913), Kuhn (1953),

or Fudenberg and Tirole (1991) for details.

Zermelo’s Theorem (1913). Every finite game of perfect information has a pure-strategy Nash

equilibrium.

2.2. The Econometric Model

In each market m = 1, . . . , M , the econometrician observes a vector of covariates x which is the

realization of some random vector X with support X . These covariates may include variables

which affect the payoffs of all players (market-specific variables) as well as variables that affect

only the payoffs of particular players. In addition, an equilibrium outcome a is observed in each

market. For a given outcome a, player i receives payoff ui (a, x,εi (a)), where εi (a) is a random

variable which captures any factors that are unobserved by the econometrician but affect the

payoff player i receives in the event that outcome a obtains. Note that the payoffs depend on the

actions of all players, not just the action of player i . This is the fundamental difference between

game theoretic models and single agent discrete choice models. In single agent models, the

payoffs are independent of a−i since there is no strategic interaction.

We now state our assumptions about the structure of the payoffs. Let εi = (εi (a))a∈A and let

ε denote the vector (ε1, . . . ,εN ). Identifying the distribution of ε is difficult even in simple single

agent models (Matzkin, 1992, 1993; Rust, 1994; Magnac and Thesmar, 2002; Aguirregabiria, 2010;

Blevins, 2014). As such, we take this distribution as given.

Assumption 1 (Distribution of Unobservables). For all x ∈X , the conditional distribution of ε

given X = x is absolutely continuous with respect to Lebesgue measure, has support E ⊂RN J N
,

and has a known conditional cdf G(· | X = x).

Under this assumption and in light of Zermelo’s Theorem, because the game in question

is a game of complete information, each realization of ε induces an optimal strategy profile

s = (s1, . . . , sN ), which is unique with probability one since ε is continuously-distributed.

Proposition 1. Under Assumption 1, the model has an almost surely unique SPNE.

Proof. The existence of a SPNE is well known (see, e.g., Fudenberg and Tirole (1991) for a proof).

Now, suppose to the contrary that there are two distinct SPNE strategy profiles s = (s1, . . . , sN ) and

s̃ = (s̃1, . . . , s̃N ). Let i denote the player moving at the latest stage in the game for which si 6= s̃i .

Let k = o−1(i ) denote that stage and let H denote the set of stage-k histories for which si 6= s̃i .
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For both strategies si and s̃i to be elements of SPNE strategy profiles it must be the case that

fi (si (h), s−i (h), x)+εi (si (h), s−i (h)) = fi (s̃i (h), s−i (h), x)+εi (s̃i (h), s−i (h)) for all h ∈H . In other

words, εi (si (h), s−i (h)) = fi (s̃i (h), s−i (h), x)− fi (si (h), s−i (h), x)+εi (s̃i (h), s−i (h)) for all h ∈H . By

Assumption 1, this event has probability zero and so the SPNE is unique with probability one. ■

Henceforth, we will drop the “almost surely unique” qualifier and simply refer to the SPNE.

Let α(u,o) denote the SPNE outcome of the game given payoffs u and an order of moves o. In

light of Proposition 1, α is a function (as opposed to a correspondence) with probability one.

Now, for simplicity we focus on the case of additively separable payoffs.

Assumption 2 (Additive Separability). Player i ’s payoff function can be written as

ui (a, x,εi ) = fi (a, x)+εi (a),

where we refer to fi (a, x) ≡ E[ui (a, x,εi ) | a, x] as the mean payoff and to εi (a) as the unobserved

component.

When the order of moves is unobserved, to complete the model the econometrician must

consider the probability distribution over the possible permutations that can occur.3 This is

similar to the situation with static simultaneous move games, where completing the model

involves incorporating a latent equilibrium selection variable (Tamer, 2003; Bajari et al., 2010).

In sequential games with a small number of players, one might specify a fully nonparametric

order selection mechanism which assigns a separate probability to each permutation in O .

However, this requires estimating N !−1 parameters and so in practice it is probably only feasible

for small values of N . At the other extreme, it is possible to simply assign probability one

to a single permutation if there is some compelling reason to believe that it always occurs.

For example, the econometrician may believe that more profitable firms enter before their

less profitable rivals (Berry, 1992). In between these two extremes there are many possible

parametric distributions over O . For example, Einav (2010) estimates a sequential game of

incomplete information in which each permutation is assumed to occur with equal probability.

Other possible distributions can depend on the covariates x. Specifying a flexible parametric

form allows a compromise between a fully non-parametric approach and imposing ad hoc

assumptions about the probabilities. This approach also remains feasible for large values of N ,

where the number of nonparametric order selection primitives would increase factorially in N .

As such, we make the following assumptions about the order selection mechanism.

3An incomplete model would not condition on O and would therefore admit an equilibrium correspondence

containing all outcomes which are equilibrium outcomes for some ordering o ∈O .
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FIGURE 1. Unobservables, strategies, and outcomes (conditional on X and O)

Assumption 3 (Order Selection Mechanism). The order of moves, O, is independent of ε condi-

tional on X and is iid across markets. Let µ : O×X → [0,1] with µ(o, x) = Pr(O = o | X = x) denote

the associated conditional probability mass function.

Both the mean payoffs, fi , and the order selection mechanism, µ, are left quite general for

now so as to discuss nonparametric identification in Section 3. Later, when we turn to estimation,

we will assume that these primitives are known up to a finite vector of parameters.

2.3. Stochastic Properties

Expressing the probability of an outcome in the sequential game framework is more complex

than doing so in a simultaneous-move game because of the recursive nature of the model. In

a normal form game, a strategy is simply a single action. In a sequential game a strategy is a

mapping from the set of player i ’s information sets (or the set of histories) to the choice set Ai .

This is crucial to the construction of the choice probabilities, but it also makes it more difficult to

express the outcome probabilities in a tractable way.

Thus, before formally looking at identification, it is useful to develop some notation and look

more closely at the relevant probability spaces. Conditional on X and O, the randomness in the

model derives from the payoff disturbances εi (a). By Proposition 1, each ε ∈ E induces a unique

SPNE strategy profile s ∈ S which in turn induces a unique outcome a ∈ A . Let φ : E → S

denote the function which maps each ε to the corresponding unique SPNE strategy profile s and

let ψ : S →A be the function that maps each strategy profile s to the resulting outcome in A .

The relationships between these spaces is illustrated in Figure 1 (conditional on X and O). Since

ε is unobserved, inference is based on the induced probability measure over the set of observed

outcomes A .

The following proposition establishes that these functions are surjective (or onto) and that

the inverse functions define disjoint sets. These properties are of interest for two reasons. First,

we require the model to be saturated so that it assigns nonzero probability to any potentially ob-
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servable outcome. Second, it allows us to characterize the inverse images under these functions,

which are the regions of integration that define the outcome probabilities used for estimation.

Proposition 2. If Assumptions 1 and 2 hold, then the mappings φ and ψ are surjective for all

X ∈X and O ∈O . Furthermore, the sets in each of the collections {φ−1(s)}s∈S and {ψ−1(a)}a∈A

are pairwise disjoint.

Proof. Since Si = {si : H o−1(i ) → Ai } and since εi (a) has full support for all i and a, for any

si ∈Si we can choose the vector εi (a) so that si is a dominant strategy. Hence, given any strategy

profile s, we can construct an ε for which s is the SPNE. Similarly, for each a ∈A , we can construct

an s for which a is the equilibrium outcome. In particular, si (h) = ai for all h ∈H o−1(i ) is a valid

strategy for each player i . The strategy profile s = (s1, . . . , sN ) trivially induces the outcome a for

any ordering o. Hence, the inverse images of these functions are nonempty.

The second conclusion follows from a fundamental property of functions. Suppose to the

contrary that there exist elements s, s′ ∈S so thatϕ−1(s)∩ϕ−1(s′) 6=∅ and let ε ∈ϕ−1(s)∩ϕ−1(s′).

Then, ϕ(ε) = s since ε ∈ϕ−1(s). But this is a contradiction since ε ∈ϕ−1(s′) implies ϕ(ε) = s′ 6= s.

The proof is analogous for ψ. ■

Proposition 2 guarantees that for any outcome a, there is a corresponding nonempty set of

strategies ψ−1(a) in S which induce a. Similarly, for any strategy profile s, there is a correspond-

ing nonempty set of unobservables φ−1(s) which induce s. Finally, combining these results, for

any outcome a, there is a set of unobservables which induce a, given by φ−1 ◦ψ−1(a). This is the

region of integration in the support of ε corresponding to the probability of observing outcome

a, conditional on X and O. Proposition 2 guarantees that this region is nonempty for each a.

The probability of observing any particular outcome is well-defined under Proposition 2

and can be constructed for a given set of primitives by using the inverse structural mappings

to express the set of unobservables which induce the outcome in question. First of all, the

probability of an outcome a is the probability that any strategy in ψ−1(a) is played, so

Pr(a | x,o) = Pr(φ−1 ◦ψ−1(a) | x,o).

Furthermore, for all a

φ−1 ◦ψ−1(a) =
⋃

s∈ψ−1(a)

φ−1(s).

Since ψ−1(a) ⊂S is finite and since the sets φ−1(s) are disjoint for all s by Proposition 2, we can

use finite additivity to write the probability of outcome a as

(1) Pr(a | x,o) =
∑

s∈ψ−1(a)

Pr(φ−1(s) | x,o).
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This provides a concise representation of an otherwise intractable recursive expression.

Let hk+1
+ (hk , s, x) denote the moves of subsequent players following the stage-k history hk ,

given that players follow the strategies specified by the strategy profile s. For each s ∈ψ−1(a) we

have

(2)

Pr(φ−1(s) | x,o) = Pr
(
so(0)(∅) = argmax

j
uo(0)( j ,h2

+( j , s), x,ε),

so(1)(h1) = argmax
j

uo(1)(h1, j ,h3
+(h1, j , s), x,ε) ∀h1 ∈H 1,

...

so(N−1)(hN−1) = argmax
j

uo(N−1)(hN−1, j , x,ε) ∀hN−1 ∈H N−1
∣∣∣x,o

)

This expression is analytically intractable, but it is straightforward to approximate via simulation.

We describe the details of this approach when we discuss estimation in Section 4. Before

considering estimation, we turn to identification.

3. Identification

In this section, we determine which features of the model are nonparametrically identified and

under what conditions. One benefit of establishing identification in this general sense is that

it also lends credibility to the estimates of carefully specified parametric models. That is, even

though data limitations might dictate a parametric specification in practice, one can be sure that

identification is not achieved only through functional form assumptions if the model is shown to

be nonparametrically identified.

The following sections present several definitions and assumptions that will be required to

establish the identification results that follow. Several simple two-player examples will be used

to emphasize the subtle differences between simultaneous- and sequential-move games. As

with single-agent, static discrete choice models, several normalizations will need to be imposed.

We will then use these normalizations as a benchmark to examine the conditions required to

nonparametrically identify the model.

3.1. Intuition for Identification

To provide a brief example of the identification problem faced, consider a simple entry model

with N = 4 players. We have simulated 1,000 markets (according to the model used below for

the Monte Carlo experiments described in Section 5, holding X fixed) and plotted the observed

reduced form distribution of outcomes and the unobserved structural distributions—the out-

come distributions for each particular order of moves as well as the distribution of permutations.
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Figure 2(a) depicts the simulated frequency of observed outcomes. Along the horizontal axis are

the 24 = 16 possible outcomes. This distribution corresponds to the reduced form of the model.

Figure 2(b) depicts the simulated frequency of the order of moves, with the 4! = 24 different

permutations along the horizontal axis. Finally, Figure 2(c) depicts the different underlying

distributions of the 16 outcomes conditional on each of the 24 permutations. Figures 2(b) and

2(c) correspond to the structural model. Essentially, the goal is to identify these structural dis-

tributions using only the observed distribution of outcomes, the observed covariates, and the

properties of the model. Identification therefore requires there to be sufficient variation in the

conditional distributions implied by the model.

161

(a) Distribution of Outcomes A | X (observed)

241

(b) Order Selection Mechanism O | X (unobserved)

1
161

2
161

3
161

4
161

5
161

6
161

7
161

8
161

9
161

10
161

11
161

12
161

13
161

14
161

15
161

16
161

17
161

18
161

19
161

20
161

21
161

22
161

23
161

24
161

(c) Conditional Outcome Distributions A | X ,O = o, o ∈O (unobserved)

FIGURE 2. Simulated Reduced Form and Structural Distributions (Conditional on X )
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Payoffs Outcome given o Different Consistent

f1(1,1) f1(1,0) f2(1,1) f2(0,1) o = (1,2) o = (2,1) Outcomes w/Theory

- - - - (1,1) (1,1) No Yes

+ - - - (1,1) (1,1) No No

- + - - (0,1) (0,1) No Yes

+ + - - (0,1) (0,1) No Yes

- - + - (1,1) (1,1) No No

+ - + - (0,0) (0,0) No No

- + + - (1,1) (0,1) Yes No

+ + + - (0,0) (0,0) No No

- - - + (1,0) (1,0) No Yes

+ - - + (1,0) (1,1) Yes No

- + - + (0,1) (1,0) Yes Yes

+ + - + (0,1) (0,1) No Yes

- - + + (1,0) (1,0) No Yes

+ - + + (0,0) (0,0) No No

- + + + (1,0) (1,0) No Yes

+ + + + (0,0) (0,0) No Yes

TABLE 2. Payoff Structures and Outcomes, N = 2, #A = 2

There is little such variation in the entry model so a relatively large sample size is required to

obtain accurate parameter estimates. To see why, consider the deterministic two-player entry

model depicted in Figures 3(a) and 3(b). If the profit from not entering is zero, then there are only

four nonzero payoffs remaining: the monopoly and duopoly profits for each player. Considering

cases where each of these payoffs is either positive or negative, there are 16 possible games. These

possibilities are listed in Table 2 along with the resulting outcomes in each case for both possible

orders of play. There are only three cases which yield different outcomes. Furthermore, theory

dictates that monopoly profit should dominate duopoly profit. This rules out two of the these

cases. Therefore, there is only a single case (negative duopoly payoff, positive monopoly payoff)

which is both theoretically consistent and yields observationally distinct outcomes depending on

the order of moves. Thus we may need a large sample size in order to obtain good estimates of the

order selection mechanism in this model. Fortunately, this case is a very simple two-player entry

model. Models with more players, more actions, or with fewer a priori theoretical restrictions

can yield more observationally distinct outcomes from which to identify the order selection

mechanism.
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1

2

1

b(
f1(1, 1, x) + ε1(1, 1)
f2(1, 1, x) + ε2(1, 1)

)

1

b(
f1(1, 0, x) + ε1(1, 0)

ε2(1, 0)

)

0

2

0

b(
ε1(0, 1)

f2(0, 1, x) + ε2(0, 1)

)

1

b(
ε1(0, 0)
ε2(0, 0)

)

0

(a) Permutation o = (1,2)

2

1

1

b(
f2(1,1, x)+ε2(1,1)
f1(1,1, x)+ε1(1,1)

)

1

b(
f2(0,1, x)+ε2(0,1)

ε1(0,1)

)

0

1

0

b(
ε2(1,0)

f1(1,0, x)+ε1(1,0)

)

1

b(
ε2(0,0)
ε1(0,0)

)

0

(b) Permutation o = (2,1)

FIGURE 3. A sequential two-player entry game

3.2. Reduced Form and Structure

A reduced-form analysis in this setting would attempt to explain the relationship between the

equilibrium outcomes and the covariates based on a random sample {ym , xm}M
m=1. The system

through which players interact is viewed as a black box. The reduced form of the model can be

summarized by λ(x), the vector of conditional outcome probabilities λ(a, x) = Pr(a | x) for all

a ∈A .

Now consider the structural model. The fundamental component of the structural model is

the structure of the game itself, with an important part of that structure being the equilibrium

function α. In light of Assumptions 1, 2, and 3, the primitives of the model are the mean payoffs

fi (a, x) and the order selection probabilities µ(o, x) for each i = 1, . . . , N , a ∈A , x ∈X , and o ∈O .
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For simplicity, since we have assumed the state space is finite, let f denote the vector of all mean

payoff primitives and let µ denote the vector of all order selection probabilities. Let Γ denote the

set of all structures, feasible ( f ,µ) combinations. We are interested in identifying as many of the

components of ( f ,µ) as possible. Essentially, we want to be able to express each primitive as a

function of observed population moments.

Every structure ( f ,µ) induces a reduced formλ(x) through the mappingλ(x) =Λ( f (x),µ(x)) =
(Λ( f (a, x),µ(x)))a∈A , where

Λ( f (a, x),µ(x)) =
∑

o∈O

[∫
1{α( f (x)+ε,o) = a}dG(ε | x)

]
µ(o, x).

The goal is to uncover the true structure ( f0,µ0) which satisfies

Λ( f0(a, x),µ0(x)) =
∑

o∈O

Pr(a | x,o)µ(o, x) = Pr(a | x) =λ0(x).

3.3. Definitions and Assumptions

For a given conditional distribution of unobservables, G , through the structure of the model the

primitives induce a particular distribution of observable equilibrium outcomes. This relationship

is the mappingΛ( f ,µ) described in Section 3.2. The inverse mappingΛ−1 partitions the set of

primitives into equivalence classes in the sense that any primitives in the same equivalence

class induce the same reduced form. This leads us to the following definitions of observational

equivalence and identification (Hurwicz, 1950; Koopmans, 1949; Matzkin, 2007).

Definition. The primitives ( f ,µ) and ( f̃ , µ̃) are observationally equivalent ifΛ( f ,µ) =Λ( f̃ , µ̃).

If two distinct sets of primitives are consistent with the observed reduced form, the researcher

cannot determine which of these primitives generated it. More formally, if for two distinct sets

of primitives ( f ,µ) and ( f̃ , µ̃) in Γ we have Λ( f ,µ) = Λ( f̃ , µ̃), then the model is not identified

because ( f ,µ) and ( f̃ , µ̃) are observationally equivalent. Upon observing the reduced form

Λ( f ,µ), one can distinguish the model primitives ( f ,µ) from ( f̃ , µ̃). This leads to the following

notion of identification.

Definition. The model is identified if ( f ,µ) 6= ( f̃ , µ̃) impliesΛ( f ,µ) 6=Λ( f̃ , µ̃).

Thus, if each structure ( f ,µ) ∈ Γ induces a unique reduced formΛ( f ,µ), then no two struc-

tures are observationally equivalent. Stated differently, if Λ is one-to-one, then the model is

identified. First, we narrow the list of primitives which are identified by showing that without

additional restrictions, some mean payoff values cannot be identified and must be normalized.
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3.4. Mean Payoff Normalization: Simultaneous and Sequential Games Compared

Although the necessary mean payoff normalizations are well known for the cases of single-

agent discrete choice models (McFadden, 1974; Maddala, 1983) and simultaneous-move discrete

games (Bresnahan and Reiss, 1991; Tamer, 2003; Bajari et al., 2010), the nature of strategies

and interactions is subtly different in sequential move discrete games. As we will show, this

allows us to identify more outcome-specific mean payoffs, and thus requires fewer mean payoff

normalizations.

Normal form games are straightforward generalizations of single-agent discrete choice prob-

lems. In a normal form game, for given values of the explanatory variables, x, and rival actions,

a−i , player i faces a simple choice between the elements of the choice set Ai which correspond

to the set of available strategies. Thus, for each x and a−i , one of player i ’s mean payoffs must be

normalized because the level of payoffs cannot be identified (i.e., only differences in payoffs can

be identified). This is analogous to the normalization required in single-agent discrete-choice

problems.

Sequential games are also generalizations of single-agent discrete choice problems, however

the relationship is not as straightforward due to the more complex nature of strategies in extended

form games. For a given player i , holding the strategies of player i ’s rivals s−i fixed, player i

faces a discrete choice problem of choosing a strategy si ∈Si . We show below that the resulting

pattern of payoff comparisons is much richer than in simultaneous games, and as a result fewer

of the mean payoffs need to be normalized.

To motivate the need to normalize the mean payoffs, consider the simultaneous two-player,

two-action game in Figure 4(a) and the corresponding sequential game in Figure 4(b). In both

cases, the choice sets are A1 =A2 = {0,1}. There are four possible outcomes (0,0), (0,1), (1,0),

and (1,1) and therefore eight mean payoff primitives. For the purposes of this example, suppose

that the idiosyncratic outcome-specific shocks εi (a) are iid across players and outcomes so that

outcome probabilities are more tractable.

The standard normalization in the simultaneous game of Figure 4(a) requires normalizing

four of the eight mean payoffs. That is, for each strategy of player 1, one of player 2’s mean

payoffs must be normalized and similarly for player 1’s payoff. The reason for this normalization

is due to the nature of comparisons that occur. Player 1 will choose 0 if, given s2 = 0,

f1(0,0, x)+ε1(0,0) > f1(1,0, x)+ε2(1,0),

or if, given s2 = 1,

f1(0,1, x)+ε1(0,1) > f1(1,1, x)+ε2(1,1).

Similar comparisons are made by player 2. Notice that for each player, there are only two
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Player 2

0 1

Player 1 0
f 1(0,0, x)+ε1(0,0)

f2(0,0, x)+ε2(0,0)

f 1(0,1, x)+ε1(0,1)

f 2(0,1, x)+ε2(0,1)

1
f 1(1,0, x)+ε1(1,0)

f2(1,0, x)+ε2(1,0)

f 1(1,1, x)+ε1(1,1)

f 2(1,1, x)+ε2(1,1)

(a) Simultaneous-Move Game

1

2

1

b(
f1(1,1, x)+ε1(1,1)
f2(1,1, x)+ε2(1,1)

)

1

b(
f1(1,0, x)+ε1(1,0)
f2(1,0, x)+ε2(1,0)

)

0

2

0

b(
f1(0,1, x)+ε1(0,1)
f2(0,1, x)+ε2(0,1)

)

1

b(
f1(0,0, x)+ε1(0,0)
f2(0,0, x)+ε2(0,0)

)

0

(b) Sequential-Move Game, o = (1,2)

FIGURE 4. Payoff Comparisons in Two-Player, Two-Action Games

independent pairwise comparisons of payoffs. These comparisons are represented by the

dotted lines in Figure 4(a). Both f1(0,0, x) and f1(1,0, x) cannot be jointly identified because, for

example, an isomorphic game can obtained by adding some constant c0 to both payoffs. Similarly,

both f1(0,1, x) and f1(1,1, x) cannot be jointly identified because the outcome distribution is

unchanged when a constant c1 is added to both terms.

Now, consider the sequential two player entry game shown in Figure 4(b). Because there

are two possible permutations, we first consider the permutation o = (1,2). A strategy for player

1 is simply a single action s1 and a strategy for player 2 consists of two history-contingent

actions, s2 = (s2(0), s2(1)). Although the payoffs are common knowledge and players can perfectly

predict the equilibrium strategies, from the econometrician’s point of view the probability that

player 1 plays a particular strategy depends on all possible strategies of player 2. The conditional

probability of an outcome a = (a1, a2) is Pr(a | x,o) = Pr(a2 | a1, x,o)Pr(a1 | x,o). Because we have
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assumed independence of the unobservables, we can immediately write down the probabilities

Pr(a2 | a1, x,o) for each a1:

Pr(a2 = 1 | a1 = 0, x,o) = Pr
(

f2(0,1, x)+ε2(0,1) > f2(0,0, x)+ε2(0,0) | x
)

,

Pr(a2 = 1 | a1 = 1, x,o) = Pr
(

f2(1,1, x)+ε2(1,1) > f2(1,0, x)+ε2(1,0) | x
)

.

Again using independence, the probability of a strategy is simply the sum of the probabilities of

the individual actions at each information set. For example, the probability of s2 = (1,1) is

Pr(s2 = (1,1) | x,o) = Pr
(

f2(0,1, x)+ε2(0,1) > f2(0,0, x)+ε2(0,0) | x
)

+Pr
(

f2(1,1, x)+ε2(1,1) > f2(1,0, x)+ε2(1,0) | x
)

.

Here, there are only two independent pairwise comparisons between the four mean payoffs for

player 2. So far, this is analogous to the simultaneous-move case.

Now, given s2, player 1 compares f1(0, s2(0), x)+ε1(0, s2(0)) with f1(1, s2(1), x)+ε1(1, s2(1)).

For example, the probability of s1 = 1 is

Pr(s1 = 1 | x,o) =
∑

s2∈S2

Pr(s1 = 1 | x,o, s2)Pr(s2 | x)

= Pr( f1(1,1, x)+ε1(1,1) > f1(0,1, x)+ε2(0,1) | x)Pr(s2 = (1,1) | x)

+Pr( f1(1,0, x)+ε1(1,0) > f1(0,1, x)+ε2(0,1) | x)Pr(s2 = (0,1) | x)

+Pr( f1(1,1, x)+ε1(1,1) > f1(0,0, x)+ε2(0,0) | x)Pr(s2 = (1,0) | x)

+Pr( f1(1,0, x)+ε1(1,0) > f1(0,0, x)+ε2(0,0) | x)Pr(s2 = (0,0) | x).

For player 1, as shown in Figure 4(b), there are four distinct pairwise comparisons between the

four payoffs (instead of the two comparisons in the simultaneous-move game). Therefore, it is

only necessary to normalize one mean payoff here. To see this, note that adding a constant to all

payoffs would indeed leave the strategy probability unchanged. In contrast, two normalizations

are needed in the corresponding simultaneous-move game.

Thus, the system of payoff comparisons is richer than in the simultaneous-move game.

Importantly, when we consider the other permutation, o = (2,1), the roles of the players are

switched. Each of player 2’s pairwise payoff comparisons are relevant and so only one of player

2’s mean payoffs must be normalized. In general, as long as the order selection probabilities are

all nonzero, each player moves first with some positive probability and so all possible pairwise

payoff comparisons are made. Thus, only one of the mean payoffs of each player needs to be

normalized.

The following proposition generalizes the above result, that the mean payoffs can at most be

identified up to a constant, beyond the simple two-player entry model.

Proposition 3. For any x ∈X , at most
∏N

i=1 Ji −1 of each player’s mean payoffs are identified.
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Proof. Suppose that the vector of covariates x ∈X is given. Let a ∈A be an arbitrary outcome

and let { fi (a, x)}i ,a be a collection of mean payoff primitives. The proof proceeds by constructing

another set of mean payoffs { f̃i (a, x)}i ,a which differ from { fi (a, x)} by a fixed constant but which

yield the same outcome probabilities. Note that for each player i , for any order of moves o with

o(0) = i (i.e., player i moves first) player i will make
∏N

l=1 Jl distinct pairwise payoff comparisons.

However, if one adds the same constant to each of player i ’s outcome-specific payoffs, then the

outcome probabilities will remain unchanged. This also remains true for any order of moves,

since any other ordering will result in fewer pairwise payoff comparisons. Therefore, at most
∏N

l=1 Jl −1 of each player’s mean payoff values can be identified. ■

3.5. Local Identification

Henceforth, in light of Proposition 3, we normalize the payoff for the outcome a = (0, . . . ,0) to

zero for each player i and each x.

Assumption 4 (Mean Payoff Normalization). For each i = 1, . . . , N and x ∈X , fi (0, . . . ,0, x) = 0.

Let f (x) denote the vector of the remaining free mean payoffs. Since the order selection prob-

abilities must sum to one, let µ(x) denote the vector of probabilities for all but one permutation.

Let Γ denote the set of all feasible values of f (x) and µ(x). Finally, since the conditional outcome

probabilities must sum to one, letΛ( f (x),µ(x)) denote the induced outcome probabilities, with

the outcome (0,0, . . . ,0) omitted. We will consider the nonparametric identification of the model

in the following sense.

Definition (Local Identification). Let Pr(a | x) be given and suppose that the primitives ( f ,µ) ∈ Γ
satisfyΛ( f (a, x),µ(x)) = Pr(a | x) for all a ∈A . Then the primitives ( f ,µ) are locally identified if

there exists an open neighborhood B(x) ⊂ Γ such that for each ( f̃ , µ̃) ∈ B(x) with ( f̃ , µ̃) 6= ( f ,µ),

we haveΛ( f̃ (x), µ̃(x)) 6=Λ( f (x),µ(x)).

Under the following conditions,Λ( f (x),µ(x)) is locally invertible, which is a sufficient condi-

tion for local identification.

Assumption 5. Λ( f ,µ) is continuously differentiable and for all x ∈X , DΛ( f (x),µ(x)) has full

column rank, where DΛ denotes the Jacobian ofΛ.

The rank assumption condition must be verified on a model-specific basis. Therefore, we

focus here on finding general conditions under which the necessary order condition holds:

(3) dimΛ( f (x),µ(x)) ≥ dimΓ= dim f (x)+dimµ(x).

This requires that there are at least as many equations as unknowns and requires counting the

observable moments and unknown primitives and placing additional restrictions on the model

when necessary.
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3.6. Moments and Primitives

For a given x, there are a finite number of moment conditions and primitives. For the model to be

identified, we require the number of moments to be at least as large as the number of primitives,

the number of mean payoffs and order selection probabilities remaining after normalization.

First we count the number of observed moment conditions and then the number of order

selection and payoff primitives. For simplicity, in this section we focus on the case where all

players i have Ji = J choices.

The observed population moments are Pr(a | x) for all a ∈A . Since there are a finite number

of outcomes, we know that the distribution of equilibrium outcomes must satisfy the adding-up

condition
∑

a∈A Pr(a | x) = 1. One degree of freedom is lost and so there are only

(4) J N −1

linearly independent outcome probabilities.

Now, for a given value of x, the payoff structure of any single player can be described by

J N −1 values, corresponding to the set of possible outcomes, with the payoff of one outcome

normalized to zero. The total number of mean payoff primitives is thus

(5) N (J N −1).

Finally, since the order selection mechanism is a probability mass function on a finite set O ,

for a given x, it can be described by

(6) N !−1

nonnegative real numbers, or rather a vector in the simplex ∆N !−1.

Proposition 4. If Assumptions 1–5 are satisfied and N ≥ 2, then the model is nonparametrically

unidentified.

Proof. A sufficient condition for showing the model is nonparametrically unidentified is that the

number of primitives is larger than the number of moments. Thus, summing (5) and (6) gives

N (J N −1)+ (N !−1), but

N (J N −1)+ (N !−1) > N (J N −1) > J N −1

since N ≥ 2. The right-hand side corresponds to (4), the number of potentially observable

outcome probabilities, so the model is unidentified without further restrictions. ■

In light of Proposition 4, the model is nonparametrically unidentified without additional

restrictions. To achieve identification, the additional restrictions must increase the number of

observed moments faster than the number of primitives.
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3.7. Exclusion Restrictions

We will discuss two types of exclusion restrictions: player-specific exclusions and order-selection

exclusions. First, suppose that some covariates zi ∈ Zi are observed for player i which affect

only the payoff of player i , given by

ui (a, x, zi ,εi (a)) = fi (a, x, zi )+εi (a)

but not the payoffs of player i ’s rivals. Suppose further that there are covariates zµ ∈Zµ which

affect the order selection mechanism µ(o, x, zµ), but do not affect the payoff structure. For the

purpose of discussing identification and counting moments, we restrict these variables to lie in

finite sets.

Assumption 6. For all i , Zi is finite with L elements and Zµ is finite with Lµ elements.

After taking these exclusion restrictions into account, after normalization there are N (J N −
1)Lµ payoff primitives, (N !−1)Lµ order selection probabilities, and (J N −1)LN Lµ population

moments. Nonparametric identification requires that the number of moments equals or exceeds

the number of primitives:

(7) (J N −1)LN Lµ ≥ N (J N −1)L+ (N !−1)Lµ.

Now, the number of moments is increasing exponentially in the number of exclusion restrictions

L while the number of primitives is only linear in L. Thus, the model can always be identified if

the player-specific covariates lie in a sufficiently rich set.

Proposition 5. If Assumptions 1–6 hold, then:

1. For any values of N and J, the model is nonparametrically identified if L is sufficiently large.

2. For any value of N , if there is a binary payoff exclusion (L = 2) then the model is nonpara-

metrically identified for a sufficiently large value of J .

For example, in the airline entry application below with N = 6 airlines and a binary choice

(J = 2), the order condition in (7) is satisfied when there are binary excluded variables zi (i.e.,

L ≥ 2), regardless of whether there is an order-selection exclusion (i.e., Lµ ≥ 1). In the application,

we include continuous player-specific variables that satisfy the payoff exclusion restriction.

4. Estimation

4.1. Maximum Likelihood Estimation

Let θ denote the vector of parameters of interest, let fi (a, x,θ) and µ(o, x;θ) be parametric

specifications for the mean payoff function and order selection mechanism, and let G be the

conditional cdf of ε given X .
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There are many possible parametric specifications for µ. For example, one can model the

probability that a particular player i moves first as

(8)
pi

p1 +·· ·+pN
.

Conditional on player j moving first, the probability that player i 6= j moves second is

pi

p1 +·· ·+p j−1 +p j+1 +·· ·+pN

and so on. This order selection mechanism is described by N −1 parameters.

A similar specification, suggested by Einav (2010), depends on observed covariates in a

logistic model for what we will refer to as the first move propensity. Let the probability that player

i moves first be

(9)
ez>i ρ

ez>1 ρ+·· ·+ez>Nρ
.

Define the second and subsequent probabilities similarly.

Now, given a sample {ym , xm} of outcomes and covariates in M markets, the log likelihood

for the sample is

(10) lnL(θ) =
M∑

m=1
lnPr(ym | xm ;θ).

where the likelihood for a single observation is

Pr(ym | xm ;θ) =
∑

o∈O

Pr(ym | xm ,o;θ)µ(o, xm ;θ).

Given the parametric forms, the conditional outcome probability Pr(ym | xm ,o;θ) can be derived

as a function of θ according to (1).

Unfortunately, estimating the model using maximum likelihood with (10) is likely to be

infeasible. Deriving a closed form for (2) without an independence assumption on the shocks,

εi (a), requires taking the integral over a very irregular subset of E . This may be possible through

the use of truncated distributions or the GHK algorithm (cf. Hajivassiliou and Ruud, 1994) in

the normal case, however there are no known closed forms for commonly used distributions

such as the type I extreme value distribution. Thus, estimating the model using MLE may require

numerical or Monte Carlo integration over a set that is difficult to quantify. For these reasons, we

focus on simulation-based estimation methods.
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4.2. Maximum Simulated Likelihood

For a given vector of parameters θ, the likelihood can be approximated using simulation by

simulating outcomes in each market R times using R draws from the joint distribution of un-

observables. Each draw is a vector of N J N outcome-player-specific payoff shocks. For each

evaluation of the log-likelihood function, this requires a total of MRN J N unobservables. For

computational efficiency and to reduce chatter in the objective function, these draws should be

stored at the beginning of the estimation routine and used for each evaluation of the simulated

log-likelihood function.

Let ε(r,m) denote the r -th draw from the distribution of unobservables for market m and let

u(r,m)(θ) = f (xm ,θ)+ε(r ) denote the resulting payoffs for the current value of θ. For each u(r,m)

and each o, the simulated SPNE outcome α(u(r,m)(θ),o) is found using backwards induction.

The simulated likelihood for market m is the simulated frequency of ym , given by

(11) P̂R (ym | xm ;θ) =
∑

o∈O

[
1

R

R∑
r=1

1{α(u(r,m)(θ),o) = ym}

]
µ(o, xm ;θ).

This is simply the proportion of the R simulated outcomes which are equal to the observed

outcome ym . The full simulated log likelihood is

ln L̂M (θ) =
M∑

m=1
ln P̂R (ym | xm ;θ).

Simulating P̂R (ym | xm ;θ) for each market can be done in parallel on multiple processors

by simulating a particular subset of markets on each processor. R should be large relative to

the total number of outcomes (and we compare several choices of R in the next section). In

the appendix, we also discuss how importance sampling can be used to reduce the number of

simulations required as in Ackerberg (2009).

As N increases, the number of terms in the summation in (11) increases as N ! since each per-

mutation o ∈O is considered. An alternative approach is to take a sample of draws from µ(o, x;θ)

and use them as representative draws to evaluate the sum. This is analogous to using Monte

Carlo integration to approximate an integral or using a small subset of possible subsamples

when using subsampling (Politis, Romano, and Wolf, 1999).

5. Monte Carlo Experiments

This section describes the results of a number of Monte Carlo experiments designed to shed

light on both the small-sample and asymptotic properties of the estimators under various

specifications. The experiments are carried out using a static entry model with N = 4 players

which will also form the basis for the empirical application of Section 6.
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The payoff function for firm i depends on common market characteristics x ∈ R, firm at-

tributes zi ∈R, and outcome a ∈A in the following way:

(12) ui (a, x, zi ,ε) =



εi (0, a−i ) if ai = 0,

β0 +β1x +γzi −δ
(∑

j 6=i a j
)+εi (1, a−i ) if ai = 1.

The decision to enter is denoted by ai = 1 and the decision not to enter is denoted by ai = 0.

The coefficient δ denotes the competitive effect of the presence of other firms. The stochastic

error term εi (a) captures the unobserved factors that affect firm i ’s profits when the outcome a

obtains. We choose the true parameters to be β0 = 0, β1 = 1, γ= 0.5, δ= 1 and we assume that

εi (a) follows the standard normal distribution.

Data for each of M markets was generated by choosing values for each parameter and

generating draws for each characteristic and unobservable term. Specifically, the market-wide

covariates are Xm ∼χ2(1), the firm-market-specific excluded variables are Zi ,m ∼ N((3− i )/10,2)

for each player i = 1, . . . , N .

The order of moves in each market was determined by a draw from the distribution of possible

permutations. We considered three specifications for the order selection mechanism:

1. Uniform: µ(o) = 1/N ! for all o ∈O .

2. Logistic: µ(o; p1, . . . , pN ) is calculated according to (8) for all o ∈O .

3. Index: µ(o, zµ;ρ) is calculated according to (9) for all o ∈O and zµ ∈Zµ.

In the logistic case, we choose the true first-move propensities to be p1 = 0.25, p2 = 0.05,

p3 = 0.20, and p4 = 0.50. In the index case, for each market m, Zµ,m = (Zµ,1,m , . . . , Zµ,N ,m) is a

vector of length N , with one variable for each player which is drawn as Zµ,i ,m ∼ N((1− i )/10,1)

and we choose the true order selection mechanism parameter to be ρ = 0.2. The outcome in

each market was found through backwards induction, using the true parameters, the randomly

drawn market and firm characteristics and order of moves, and draws of the unobservables.

We carried out a series of Monte Carlo experiments for each of the three specifications

described above (uniform, logistic, and index). For each experiment, we choose values of M ,

the number of markets, and R, the number of simulation draws used for estimation. For each

specification and each choice of M and R, we simulated 25 datasets and obtained parameter

estimates using MSL for each. We report the mean bias and the square root of the mean square

bias (RMSE) for each parameter.

We seek to learn about the finite sample properties of the estimators and verify the asymptotic

properties. As such, we perform experiments with M = 200,400,800 markets and with R =
25,50,100,200,400 simulation draws. MSL estimators are consistent as long as R → ∞ and
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β0 β1 γ δ

M R Bias RMSE Bias RMSE Bias RMSE Bias RMSE

200

25 -0.063 0.320 -0.183 0.237 -0.408 0.464 0.267 0.389

50 0.022 0.265 -0.059 0.168 -0.185 0.269 0.080 0.256

100 0.072 0.243 -0.023 0.121 -0.076 0.194 0.017 0.211

200 -0.043 0.209 0.002 0.111 0.006 0.187 0.042 0.181

400 -0.024 0.207 0.017 0.114 0.014 0.158 0.020 0.184

400

25 0.002 0.247 -0.234 0.263 -0.522 0.542 0.267 0.341

50 0.066 0.174 -0.135 0.191 -0.253 0.287 0.122 0.211

100 0.046 0.208 -0.037 0.119 -0.086 0.150 0.044 0.161

200 0.037 0.137 -0.009 0.110 -0.039 0.141 0.005 0.113

400 0.018 0.128 0.007 0.098 0.000 0.107 0.006 0.127

800

25 0.047 0.170 -0.226 0.259 -0.493 0.508 0.214 0.262

50 0.042 0.199 -0.148 0.197 -0.332 0.353 0.123 0.194

100 0.019 0.178 -0.066 0.111 -0.158 0.207 0.083 0.146

200 0.043 0.099 -0.029 0.083 -0.079 0.116 0.019 0.087

400 0.033 0.116 -0.012 0.076 -0.047 0.092 0.003 0.099

TABLE 3. Monte Carlo Results with Uniform O

M →∞ and they are
p

M-consistent and asymptotically normal when R/
p

M →∞ as M →∞.

Therefore, we should expect the mean bias and RMSE to decrease as we increase both M and R.

Table 3 reports the results for the uniform order selection mechanism. In this case, each

permutation arises with equal probability and so there are no parameters to estimate other than

the payoff parameters. The top panel of the table shows how the mean bias and RMSE vary as

we increase the number of simulation draws from R = 25 to R = 400, holding the number of

markets fixed at M = 200. As expected, the bias and RMSE decrease for all parameters when

increasing the number of simulation draws because the log likelihood approximation is more

precise. Proceeding to the middle and lower panels, the number of markets doubles to M = 400

and then M = 800. Again, as expected increasing the number of markets also results in lower

mean bias and RMSE values nearly uniformly.

Table 4 reports the results for the logistic order selection mechanism, which introduces three

new parameters p1, p2, and p3 (with p4 = 1−p1 −p2 −p3). These first-move propensities are

estimated fairly precisely even for as few as R = 50 simulation draws even though the order of

moves is treated as being unobserved (i.e., the simulated permutations are not being used during

estimation). Because we have introduced additional parameters, the remaining parameter

estimates have slightly more variation but are still estimated rather precisely for even small

values of R.
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β0 β1 γ δ ρ

M R Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

200

25 0.014 0.233 -0.160 0.233 -0.041 0.125 0.172 0.279 -0.145 0.221

50 0.046 0.226 -0.033 0.175 -0.003 0.132 0.036 0.217 -0.165 0.301

100 0.073 0.238 0.037 0.152 0.029 0.119 -0.051 0.204 -0.066 0.224

200 0.067 0.222 0.035 0.140 0.019 0.082 -0.061 0.193 -0.009 0.326

400 0.030 0.176 0.035 0.125 0.003 0.085 -0.028 0.127 -0.015 0.285

400

25 0.059 0.176 -0.170 0.223 -0.078 0.113 0.169 0.260 -0.093 0.121

50 -0.012 0.143 -0.049 0.145 0.005 0.076 0.086 0.196 -0.089 0.140

100 -0.019 0.108 0.012 0.106 0.005 0.071 0.019 0.126 0.026 0.219

200 -0.034 0.137 0.020 0.115 0.018 0.074 0.016 0.128 0.006 0.179

400 -0.015 0.109 0.036 0.097 0.013 0.076 -0.019 0.109 0.012 0.206

800

25 0.051 0.132 -0.198 0.213 -0.103 0.135 0.180 0.208 -0.151 0.163

50 0.026 0.118 -0.087 0.127 -0.051 0.088 0.085 0.167 -0.124 0.145

100 -0.007 0.134 -0.056 0.099 -0.035 0.056 0.071 0.148 -0.058 0.132

200 0.052 0.109 0.004 0.064 0.004 0.054 -0.020 0.092 -0.055 0.112

400 0.017 0.074 0.006 0.063 0.002 0.047 -0.006 0.074 -0.017 0.141

TABLE 5. Monte Carlo Results with Normal ε and Index O

Finally, Table 5 reports the results for the index order selection mechanism, which introduces

a single new parameter ρ, which is the coefficient on the player-specific covariates in the order

selection probabilities. The estimates behave similarly to the logistic case. Some parameter

estimates appear to have more variation and other less than the logistic case, but this could be

due to the specific parameterizations chosen. The situation is similar to that with the logistic

order selection mechanism: we have more parameters than the uniform case but are still able to

estimate both the payoff parameters and the order selection parameter accurately.

Overall, the results suggest that even with a small number of simulation draws and a modest

number of markets, we can obtain useful estimates of both the payoff parameters and the order

selection mechanism parameters. The same basic entry model and payoff function and the

same index order selection mechanism used here will form the basis for the model used in the

empirical application that follows.

6. An Application to Entry in the Airline Industry

6.1. Data

To investigate the importance of move-order effects in the airline industry, we use the data

of Ciliberto and Tamer (2009), who in turn followed Borenstein (1989) and Berry (1992) in
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TABLE 6. Summary Statistics for Market-Level Variables

Variable Min. Max. Mean S.D. Obs.

Wright amendment 0 1 0.029 0.169 2742

Dallas airport 0 1 0.070 0.255 2742

Market size (million people) 0.310 15.236 2.259 1.846 2742

Per capita income ($10,000) 1.702 4.580 3.240 0.391 2742

Income growth rate (%) -0.300 10.050 4.051 1.478 2742

Market distance (1,000 miles) 0.067 2.724 1.085 0.624 2742

Closest airport (100 miles) 0.102 1.505 0.346 0.205 2742

U.S. center distance (1,000 miles) 0.283 3.390 1.571 0.594 2742

constructing the dataset. The data was taken from the second quarter of the 2001 Airline Origin

and Destination Survey (DB1B) provided by the U.S. Department of Transportation and which

based on a 10% random sample of airline tickets sold within the quarter.

As is standard in this literature, a market is defined to be a trip between two cities without

regard to the intermediate stops. The dataset contains M = 2,742 markets. The DB1B data be

used to determine which airlines serve which markets (i.e., entry decisions). This information

was supplemented with additional demographic and geographic data. Summary statistics for the

variables we use are listed in Table 6 for the market-level variables and Table 7 for the carrier-level

variables. For the entry decision, Southwest (WN) serves 25% of markets, United (A) serves 28%,

American (AA) serves 43%, and Delta (DL) serves 55%. Other medium airlines (MA) serve 55% of

the markets and other low-cost carriers (LC) serve 16% of the markets. We now briefly review the

other variable definitions; see the above references for additional details.

Cost and Airport Presence The variable referred to as “cost” is the additional distance that a flight

must travel if it makes a connection to the nearest hub rather than traveling non-stop, taken as a

percentage of the total non-stop distance. This can be interpreted as an opportunity cost: the

next best alternative to serving the market directly is for the carrier to serve it with a connecting

flight via it’s nearest hub. For the main carriers used in our analysis, average cost (in percentage

terms) ranges from 0.736 for American to 0.303 for Southwest. As an example, if the non-stop

distance is 1,000 miles and the connecting itinerary distance is 1,500 miles, then the cost is

defined as (1500−1000)/1000 = 0.5 (i.e., the connecting flight distance is 50% higher than that of

the direct flight).

Market power is measured by “airport presence” which is a function of the number of markets

served out of the endpoint airports and was constructed by following Berry (1992). It is defined
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TABLE 7. Summary Statistics for Carrier-Level Variables

Variable Carrier Min. Max. Mean S.D. Obs.

Entry (%)

AA 0 1 0.426 0.495 2742

DL 0 1 0.551 0.497 2742

UA 0 1 0.275 0.447 2742

MA 0 1 0.548 0.498 2742

LC 0 1 0.162 0.369 2742

WN 0 1 0.247 0.431 2742

Cost (%)

AA 0 27.570 0.736 1.609 2742

DL 0 27.570 0.420 1.322 2742

UA 0 21.096 0.784 1.476 2742

MA 0 11.620 0.229 0.615 2742

LC 0 3.095 0.043 0.174 2742

WN 0 16.180 0.303 0.860 2742

Airport presence (%)

AA 0 0.873 0.422 0.167 2742

DL 0 0.987 0.540 0.181 2742

UA 0 0.689 0.265 0.153 2742

MA 0 0.850 0.376 0.135 2742

LC 0 0.650 0.098 0.077 2742

WN 0 0.863 0.242 0.176 2742

by taking the shares of markets served out of each endpoint airport (of the total served by at

least one carrier) and averaging over both endpoints. Delta, American, and Southwest all have

markets with over 85% presence. Southwest, followed closely by United, have the lowest average

presence (24% and 27%, respectively). Delta has the highest average presence (54%). Airport

presence influences profits, but it can also serve as a commitment device in the order selection

mechanism.

Dallas and the Wright Amendment The Wright amendment was passed in 1979 to promote de-

velopment of Dallas/Fort Worth airport. Traffic out of Dallas Love airport, the second major

airport in the area, was restricted: only flights traveling within Texas or to neighboring states

were permitted originally. Additional states were added in 1997 resulting in permitted flights

between Dallas Love to destinations in Louisiana, Arkansas, Oklahoma, New Mexico, Alabama,

Kansas, and Mississippi. The amendment was partially repealed in 2006 with some restrictions

left intact until 2014. We control for the Wright Amendment using an indicator variable equaling
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Parameter Estimate S.E.

Payoff function

Airport presence 8.621 (0.063)

Cost -0.439 (0.008)

Market size 0.117 (0.006)

Market distance -0.133 (0.011)

Close airport 0.120 (0.014)

U.S. center distance 0.218 (0.009)

Per capita income 0.129 (0.011)

Income growth 0.049 (0.005)

Wright amendment -1.813 (0.130)

Dallas 0.342 (0.070)

Competitive effect -0.349 (0.007)

Constant -5.299 (0.019)

First-move propensity

Airport presence -2.984 (0.895)

Cost 3.821 (0.622)

Log likelihood -6063.548

Markets 2742

TABLE 8. Airline Entry Model Parameter Estimates (R = 400)

1 if traffic in the market is restricted by the amendment and 0 otherwise. Additionally, we include

an indicator variable for markets with Dallas as an endpoint.

Demographic and Geographic Variables We use six additional control variables. The first three are

demographic variables that measure the size and economic conditions of the market. These are

the average per capita incomes and average income growth rates of the endpoint cities as well

as “market size”, which is is defined as the geometric mean of the populations of the endpoint

cities. The remaining three are geographic properties of the market: “market distance” is defined

as the non-stop distance (in thousands of miles) between the endpoints, “close airport” is the

minimum of the distances (in hundreds of miles) from each endpoint airport to the nearest

alternative airport, and “U.S. center distance” is the sum of the distances (in thousands of miles)

from each endpoint to the geographical center of the United States.
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6.2. Results

We estimate the payoff function in (12) using the data for all 2,742 markets. The market-specific

variables in the vector x include a constant, the market size, distance, and income measures,

and the Dallas and Wright amendment indicators. The carrier-specific variables included in the

vectors zi include airport presence and cost. Finally, we also include both airport presence and

cost in the logit first-move probabilities for the index order selection mechanism in (9). This

yields two additional parameters represented by the vector ρ.

The estimates for the empirical model are reported in Table 8. Standard errors for the

maximum simulated likelihood estimates are calculated by inverting the outer product form of

the information matrix using standard formulas and numerical gradients with stepsize h = 10−6

(see, e.g., Cameron and Trivedi (2005)). We find that carriers are more likely to enter larger

markets with higher per capita income and higher rates of income growth. Firms serving a

market connecting to Dallas were more profitable than others, on average. Yet, the negative

effects of the Wright amendment were over five times as large as the benefit from serving a Dallas

market.

The firm-specific measures were among the most important determinants of profits, with

airport presence having a large positive effect and cost having a large negative effect. Interestingly,

both of these measures have the opposite signs in the first-move propensity and are both

significantly different from zero at the 1% level. Firms with more airport presence are more likely

to move last; firms with higher costs tend to move earlier. Because of firm-specific heterogeneity,

it appears that firms with more presence in a market are able to enjoy last mover advantages. Due

to their strong profit advantages, they can credibly commit entry despite entering after other,

weaker firms. Therefore, our results indicate that allowing for move-order effects is important in

the airline industry.

7. Conclusion

The methods introduced here expand the array of available empirical models of static games

available to researchers. We have developed and analyzed an econometric model based on

a sequential game of complete information with discrete choices. The model has interesting

differences in terms of identification from its simultaneous-move counterpart and allows for

additional flexibility in that it can capture the effects of the order of moves separately from payoff

effects. We have demonstrated the simulation-based estimator proposed through a series of

Monte Carlo experiments and used data on entry in airline markets to illustrate that move-order

seems to be an important determinant of market structure in this industry.
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A. Alternative Estimators and Methods

A.1. Method of Simulated Moments

The parametric model can also be estimated using the Method of Simulated Moments (MSM) of

McFadden (1989). Let θ be a l ×1 vector of parameters. For simplicity, we will refer to outcomes

by a number a ∈ {1, . . . , J N } instead of using action profiles. For each a,

E[1{ym = a}−Pr(a | xm ;θ) | xm] = 0.

Let wa(xm) be a Q ×1 vector of instruments with Q ≥ l = dimθ. Then, by the law of iterated

expectations we have

E
[(

1{ym = a}−Pr(a | xm ;θ)
)

wa(xm)
]= 0.

Method of Moments estimation uses the sample analog of these moment conditions:

1

M

M∑
m=1

J N−1∑
a=1

[
1{ym = a}−Pr(a | xm ;θ)

]
wa(xm).

As before, due to the difficulty of calculating Pr(a | xm ;θ) we can use the simulated probabilities

P̂r(a | xm ;θ) calculated as in (11). Then, the simulation analog of the unconditional moment

conditions is

q(θ) = 1

M

M∑
m=1

J N−1∑
a=1

[
1{ym = a}− P̂r(a | xm ;θ)

]
wa(xm),

and the MSM estimator is defined by

θ̂ = argmin
θ

q(θ)>W q(θ),

where W is a positive definite Q ×Q weighting matrix corresponding to some metric on RQ .

A.2. Importance Sampling

For estimation purposes, we are typically interested in the probability of a particular outcome a

occurring conditional on the covariates x, denoted by Pr(a | x). This is the case for both MSL and

MSM. For a given parametric model, this probability can be expressed in integral form as

Pr(a | x;θ) =
∑

o∈O

∫
1{α(u(x,ε,θ),o) = a} dG(ε | x)µ(o, x;θ),

where α(u(x,ε,θ),o) denotes the subgame perfect Nash equilibrium outcome for a given set of

covariates, payoffs, and an order of moves. Importantly, α does not depend on θ except through
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u. For simplicity, let u denote the matrix of payoffs and let h(u | x,θ) denote the implied density

of u. The outcome of the game can be determined by simply knowing o and u, but evaluating

this integral requires solving the game for each value of u, or rather, for each ε and θ. We can

change the variable of integration from ε to u and write

Pr(a | x;θ) =
∑

o∈O

µ(o, x;θ)
∫

1{α(u,o) = a}h(u | x;θ)du

since given x and θ, the distribution of ε induces a distribution of u which can be easily found

and the density h can be evaluated. Then, it is straightforward to apply another transformation

which allows the integral to be simulated using importance sampling, following Ackerberg (2009).

Simply multiplying and dividing by the value of some sampling density q(·) does not change the

value of the integral, but facilitates easier simulation of the integral. This yields

Pr(a | x;θ) =
∑

o∈O

µ(o, x;θ)
∫

1{α(u,o) = a}
h(u | x;θ)

q(u)
q(u)du.

Now, the integral can be simulated using values of u that are pre-drawn from q(·). The game has

to be solved for each of these values only once, at the beginning of the estimation procedure

instead of at each iteration for a new value of θ. Instead, the fraction h(u | x;θ)/q(u) provides an

importance weight for each draw from q(u).

Now, given a simulated sample {u(r )}R
r=1 with u(r ) ∼ q(·), the likelihood can be approximated

through simulation by the sum

∑

o∈O

µ(o, x;θ)
1

R

R∑
r=1

1
{
α(u(r ), o) = a

} h(u(r ) | x,θ)

q(u(r ))

By the law of large numbers,

1

R

R∑
r=1

1
{
α(u(r ),o) = a

} h(u(r ) | x;θ)

q(u(r ))

p→
∫

1{α(u,o) = a}
h(u | x;θ)

q(u)
q(u)du.

It only remains to specify the density q . This density could be chosen by first estimating the

model in the incomplete information case (Einav, 2010). The estimate θ̂, the payoff function

specification, and the distribution of ε then yield a candidate density q .
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