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Abstract

We propose a new sequential Efficient Pseudo-Likelihood (k-EPL) estimator for dy-
namic discrete choice games of incomplete information. k-EPL considers the joint
behavior of multiple players simultaneously, as opposed to individual responses to
other agents’ equilibrium play. This, in addition to reframing the problem from condi-
tional choice probability (CCP) space to value function space, yields a computationally
tractable, stable, and efficient estimator. We show that each iteration in the k-EPL se-
quence is consistent and asymptotically efficient, so the first-order asymptotic properties
do not vary across iterations. Furthermore, we show the sequence achieves higher-order
equivalence to the finite-sample maximum likelihood estimator with iteration and that
the sequence of estimators converges almost surely to the maximum likelihood estima-
tor at a nearly-superlinear rate when the data are generated by any regular Markov
perfect equilibrium, including equilibria that lead to inconsistency of other sequential
estimators. When utility is linear in parameters, k-EPL iterations are computationally
simple, only requiring that the researcher solve linear systems of equations to gener-
ate pseudo-regressors which are used in a static logit/probit regression. Monte Carlo
simulations demonstrate the theoretical results and show k-EPL’s good performance
in finite samples in both small- and large-scale games, even when the game admits
spurious equilibria in addition to one that generated the data. We apply the estimator
analyze competition in the U.S. wholesale club industry.
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1 Introduction

Estimation of dynamic discrete choice models – particularly dynamic discrete games of in-
complete information – is a topic of considerable interest in economics. Broadly, likelihood-
based estimation of these models takes the form

max
(θ,Y )∈Θ×Y

QN(θ, Y )

s.t. G(θ, Y ) = 0,

where QN is the log-likelihood function based on N independent markets, θ is a finite-
dimensional vector of parameters, Y is a vector of important auxiliary parameters, and
G(θ, Y ) = 0 is a vector equality constraint that represents equilibrium conditions. The
parameters θ usually consist of the structural parameters of the model. Common examples
of auxiliary parameters Y include expected/integrated value functions or conditional choice
probabilities, since the equality constraint is often derived from an equilibrium fixed point
condition of the form G(θ, Y ) ≡ Y − Γ(θ, Y ) = 0.

One approach to estimating these models is to directly impose the fixed point equation
for each trial value of θ visited by the optimization algorithm by solving for Yθ such that
G(θ, Yθ) = 0. This approach was pioneered by Miller (1984), Wolpin (1984), Pakes (1986),
and Rust (1987) for single-agent models, where the fixed point is unique and can be com-
puted via standard value function iteration or backwards induction. Solution algorithms
are available for dynamic games (Pakes and McGuire, 1994, 2001), but it is often infeasible
to nest those within an estimation routine because the computational burden can be quite
large. Furthermore, in games the model may be incomplete due to multiple solutions Yθ

(Tamer, 2003).
These issues with the nested fixed-point approach led researchers to extend conditional

choice probability (CCP) estimators – first introduced in the seminal work of Hotz and Miller
(1993) for single-agent models – to the case of dynamic discrete games. Of particular interest
here is the nested pseudo-likelihood approach of Aguirregabiria and Mira (2002; 2007).1 They
suggest using a k-step nested pseudo-likelihood (k-NPL) approach, which defines a sequence
of estimators, as an algorithm for computing the nested pseudo-likelihood (NPL) estimator,
a fixed point of the sequence. In single-agent models, Aguirregabiria and Mira (2002) show
that the k-NPL estimator is efficient for k ≥ 1 when initialized with a consistent CCP

1Some other examples of CCP estimators are described in Hotz, Miller, Sanders, and Smith (1994); Bajari,
Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008).
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estimate, in the sense that it has the same limiting distribution as the (partial) maximum
likelihood estimator. Furthermore, Kasahara and Shimotsu (2008) showed that the sequence
converges to the true parameter values with probability approaching one in large samples.
Indeed, the Monte Carlo simulations in Aguirregabiria and Mira (2002) show that single-
agent k-NPL reliably converges to the maximum likelihood estimate. The combination of
computational simplicity, efficiency, and convergence stability make k-NPL an attractive
alternative to other approaches, such as nested fixed point (computationally burdensome)
or standard Newton or Fisher scoring steps on the full maximum likelihood problem (often
diverges in finite samples in practice).2

Unfortunately, these attractive properties of k-NPL are lost in dynamic games. Aguirre-
gabiria and Mira (2007) show that k-NPL estimates are in general not efficient for k ≤ ∞,
although they show that the ∞-NPL (taking k → ∞ or until convergence) estimator out-
performs the 1-NPL estimator in efficiency when both are consistent. But Pesendorfer and
Schmidt-Dengler (2010) show that the sequence may fail to converge to the equilibrium
that generated the data, even with very good starting values, so that ∞-NPL may not
be consistent (see also, Kasahara and Shimotsu (2012), Egesdal, Lai, and Su (2015), and
Aguirregabiria and Marcoux (2021)). Kasahara and Shimotsu (2012) show that inconsis-
tency occurs when the NPL mapping is unstable at the data-generating equilibrium, which
is essentially equivalent to best-response instability of the equilibrium.3

Another type of CCP estimator is the minimum-distance estimator (Altug and Miller
(1998); Pesendorfer and Schmidt-Dengler (2008)). This estimator is both consistent and
efficient in dynamic games, and Bugni and Bunting (2021) develop a sequential version
of this estimator, which we refer to as k-MD. However, Monte Carlo simulations show that
these econometric properties come at the expense of greatly increased computational burden,
taking 12 to 26 times longer per iteration than k-NPL in even the simplest small-scale
dynamic games.4 This difference in computation time is likely to grow with the size of the
game, which would be a serious concern for empirical applications. This leaves the researcher
with an undesirable tradeoff between the computationally simple k-NPL sequence and the
more burdensome k-MD sequence with better efficiency properties.

But there is another concern shared by the k-NPL and k-MD sequences: finite sample
2This is a well-known limitation of standard Newton steps, and further regularization is often needed to

ensure convergence.
3The NPL mapping is first-order equivalent to the best-response mapping at the equilibrium.
4Bugni and Bunting (2021) perform Monte Carlo simulations with a very small-scale game (two players,

two actions, four states), and even in that setting they remark, “... computing the optimally weighted 1-MD,
2-MD, and 3-MD estimators takes us roughly 33%, 75%, and 80% more time than computing the 20-[NPL]
estimator, respectively.” These translate to roughly 26, 17.5, and 12 times longer per iteration for each
respective case.
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performance of successive iterations. The k-MD estimator uses the NPL mapping to update
choice probabilities between iterations, so there is reason to be concerned that it may mimic
k-NPL’s finite sample properties when the data-generating equilibrium is NPL-unstable.
While the first-order asymptotic analysis of Bugni and Bunting (2021) implies that both
sequences are consistent for finite k, this asymptotic consistency does not necessarily lead
to good performance in finite samples. Indeed, the finite-sample performance of k-NPL
deteriorates with k when the equilibrium is NPL-unstable. For example, Pesendorfer and
Schmidt-Dengler (2008) consider a finite number of iterations for k-NPL and find that it
is severely biased in large-but-finite samples when the equilibrium is NPL-unstable. In our
own Monte Carlo simulations presented later, we find that substantial bias appears rather
quickly, even for low values of k. This issue may also be a concern for k-MD, since it is
also consistent for finite k but has unknown stability properties as k → ∞, which may
lead to deterioration in finite-sample performance even for fixed k, similar to k-NPL. This
concern arises because Kasahara and Shimotsu (2012) show that instability/inconsistency of
the k-NPL sequence arises from instability of the NPL mapping used to update the choice
probabilities between iterations.5

With these concerns about various sequential methods in mind, an important question
arises: is there a CCP-based sequence that achieves a balance between computational sim-
plicity, asymptotic efficiency, and good finite-sample properties with any number of itera-
tions – including as k → ∞ (iterating to convergence) – in dynamic games? The primary
contribution of this paper is to provide such a method, which we name the k-step Effi-
cient Pseudo-Likelihood (k-EPL) estimator. We show that k-EPL estimates are first-order
asymptotically equivalent to the maximum likelihood estimate for any number of iterations,
k ≥ 1. Thus, every estimate in the sequence is efficient. Furthermore, we also show that
higher-order improvements are achieved with iteration, so the k-EPL sequence converges to
the finite-sample maximum likelihood estimator almost surely. The convergence rate is fast,
approaching super-linear as N → ∞. This convergence result for k-EPL holds even when
the data-generating equilibrium is best-response unstable, rendering k-NPL inconsistent.

One key distinction between k-EPL and k-NPL lies in how we incorporate simultaneous
play by multiple agents. While k-NPL focuses on single agents’ responses to a combination of
an exogenous state transition process and other agents’ equilibrium play, k-EPL incorporates
the simultaneous nature of the game and is based on the joint behavior of multiple players.
Incorporating this additional information yields increased asymptotic precision.

Despite this conceptual modification, our k-EPL estimator retains a simple computa-
5However, a rigorous econometric analysis of the the k-MD estimator’s behavior as k → ∞ is beyond the

scope of this paper.
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tional structure similar to k-NPL. When utility is linear in the parameters of interest, both
k-EPL and k-NPL iterations proceed in two stages: (i) solve a set of linear systems to gen-
erate pseudo-regressors; and (ii) use the pseudo-regressors in a static logit/probit maximum
likelihood problem. The linear systems only need to be solved once per iteration in the
sequence, and the static logit/probit problem is a low-dimensional, strictly concave problem
that has a unique solution and is easy to solve with out-of-the-box optimization software.
Because k-EPL incorporates all players simultaneously, the linear systems in k-EPL have
larger dimension than those in k-NPL. While this increases the relative computation time
in large-dimensional problems, the increase appears much less severe than the computation
time required for k-MD. We also find that iterating k-EPL to convergence can be faster than
doing so with k-NPL when the game is not too large, since the need for fewer iterations
results in lower overall computation time.

One interesting implication of our higher-order analysis is that iterating k-EPL can also
provide a convenient algorithm for computing the maximum likelihood estimator. We ex-
plore this in some of our Monte Carlo simulations and find that it performs quite well, even
with random starting values. However, our primary focus is on the entire k-EPL sequence,
beginning with consistent initial estimates. We find that much of the practical improve-
ment from iteration is achieved with just a few iterations in our Monte Carlo experiments,
suggesting that low values of k can be quite effective when the initial CCP estimates are
consistent.

In recent related work, Aguirregabiria and Marcoux (2021) studied the finite-sample
properties of ∞-NPL (k-NPL with k → ∞) and introduced a variant of the k-NPL algorithm
that updates the conditional choice probabilities by applying spectral methods to the CCP
updates. The goal of their algorithm is to improve convergence properties of ∞-NPL for
unstable fixed points.6 However, there are several differences between their work and ours.
First, they limit their analysis of the spectral algorithm to computing the best fixed point of
the k-NPL sequence, whereas we provide analysis for all the iterations in the k-EPL sequence.
Second, upon convergence, the k-NPL and spectral k-NPL algorithms do not produce the
maximum likelihood estimator, and convergence can require many iterations. In contrast,
our k-EPL estimator has the same limiting distribution as the MLE at each iteration and
usually converges locally to the MLE after few iterations in finite samples. We verify these
properties in our simulation studies.

Our work is also related to methods leveraging Neyman orthogonalization, which has
6In the population or in finite samples, the NPL operator may have spectral radius larger than one for

some equilibria, rendering it unstable. Conversely, the spectral radius of the EPL operator is zero in the
population and near zero in finite samples.

5



played a central role in recent advances in the broader econometrics literature (see, e.g., Cher-
nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018); Chernozhukov,
Escanciano, Ichimura, Newey, and Robins (2022); Chernozhukov, Newey, and Singh (2022)).
k-EPL leverages a type of quasi-Newton step in its construction, leading to an important
“zero Jacobian” property. Consequently, each estimate in the k-EPL sequence is asymptot-
ically Neyman orthogonal to the previous estimate, and which leads to many of k-EPL’s
attractive econometric properties.

We demonstrate the application of the k-EPL estimator through an empirical analysis
of the U.S. wholesale club industry, with a specific focus on its three major players: Sam’s
Club, Costco, and BJ’s. We construct a structural dynamic model to examine the industry’s
competitive landscape. Leveraging data on club stores operating across the United States
from 2009 to 2021, we employ k-EPL to estimate structural parameters such as fixed costs,
entry costs, the effect of market size, and the competitive effect. Additionally, we consider a
counterfactual experiment designed to identify the key determinants of market entry behavior
and to explore their potential influence on the industry’s structure.

The remainder of the paper proceeds as follows. Section 2 describes a generic dynamic
discrete choice game of incomplete information. Section 3 describes the k-EPL estimator,
its asymptotic and finite-sample properties, and its numerical implementation. Section 4
provides Monte Carlo simulations, and additional simulation results are included in the
appendix. Section 5 describes our empirical application to the U.S. wholesale club industry.
Section 6 concludes. All proofs appear in the Appendix.

2 Dynamic Discrete Games of Incomplete Information

Here we describe a canonical stationary dynamic discrete game of complete information in
the style of Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008).
Time is discrete, indexed by t = 1, 2, 3. . . . . In a given market, there are J firms indexed
by j ∈ J = {1, 2, . . . , |J |}. Given a vector of state variables observable to all agents and
the econometrician, xt, and its own private information εjt , each firm chooses an action,
ajt ∈ A = {0, 1, 2, . . . , |A| − 1}. Action zero is the “outside option” when applicable. All
players choose their actions simultaneously.

Agents have flow utilities (profits), U j(xt, a
j
t , a

−j
t , εjt ; θu), where a−j

t are the actions of the
other players. States transition according to p(xt+1, εt+1 | at, xt, εt; θf ), and the discount
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factor is β ∈ (0, 1). Agents choose actions to maximize expected discounted utility,

E

{
∞∑
s=0

βs−tU j(xs, a
j
s, a

−j
s , εjs; θu)

∣∣∣∣xt, ε
j
t

}
.

The primary parameter of interest is θ = (θu, θf ). Furthermore, we impose the following
standard assumptions on the primitives.

Assumption 1. (Additive Separability) U j(xt, a
j
t , a

−j
t , εjat; θu) = ū(xt, a

j
t , a

−j
t ; θu) + εjt(a

j
t).

Assumption 2. (Conditional Independence) p(xt+1, εt+1 | xt, at, εt; θf ) = g(εt+1)f(xt+1 |
xt, at; θf ), where g(εt+1) is absolutely continuous with respect to the Legesgue measure on
R|A|×|J |.

Assumption 3. (Independent Private Values) Private values are independently distributed
across players.

Assumption 4. (Finite Observed State Space) xt ∈ X = {1, 2, . . . , |X |}.

Assumptions 1–4 here correspond to Assumptions 1–4 in Aguirregabiria and Mira (2007).
In most applications in the literature, the private shocks are assumed to be either i.i.d. Type
1 Extreme Value or normal, both of which satisfy the assumptions.

Example 1. Wholesale Club Store Entry and Exit: Firms are wholesale club stores (Costco,
Sam’s Club, BJ’s, etc.) making decisions of whether to operate in a market (ajit = 1, “entry”)
or not (ajit = 0, “exit”). After the entry/exit decision is made in each period, the firms receive
profits that result from a static equilibrium competition (e.g., in prices or quantities). The
outcome of the static competition equilibrium depends on (i) the number of active firms; and
(ii) the market size, sit. The observed state going into period t is xit = (sit, ai,t−1), which
includes the market size and indicators for incumbency. The per-period profit for active firm
j is then given by

ūj(xit, a
j
it = 1, a−j

it ; θ) = θFC,j + θRSsit − θRN ln

(
1 +

∑
l ̸=j

alit

)
− θEC(1− aji,t−1).

Here, θFC,j < 0 is the fixed cost of operation for firm j, θEC > 0 is the entry cost (which
is not paid by incumbents), θRS > 0 represents the effect of market size on flow profit, and
θRN > 0 represents the effect of competition on flow profits. Flow profit for an inactive firm
is normalized to zero: ūj(xit, a

j
it = 0, a−j

it ; θ) = 0, which is required for identification.7

7See, e.g., the discussion of Example 1 in Aguirregabiria and Mira (2007). We note that this is not without
loss of generality for counterfactuals, as discussed in Kalouptsidi, Scott, and Souza-Rodrigues (2021).
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The operative equilibrium concept here will be that of a Markov Perfect Nash equilibrium.
We will consider stationary equilibria only, so from here we drop the time subscript. Because
moves are simultaneous, the actions of player j do not depend directly on a−j ∈ A|J |−1,
but rather on P−j(x) ∈ ∆|J |−1, where P−j(x) is player j’s belief about the other players’
probability of playing the corresponding actions in state x and ∆ is the unit simplex in
R|A|−1. So, from here on out we will work with the following utility function and transition
probabilities:

uj(x, aj;P−j, θu) =
∑

a−j∈A|J |−1

P−j(x, a−j)ū(x, aj, a−j; θu)

f j(x′ | x, aj;P−j, θf ) =
∑

a−j∈A|J |−1

P−j(x, a−j)f(x′ | x, aj, a−j; θf )

Now consider the vector of player j’s (expected) choice-specific value functions, vj ∈
R|X |×|A|, and define the corresponding choice probabilities as Λj(x, aj; vj), which is the proba-
bility agent j chooses action aj in state x, conditional on having choice-specific value function
vj.8 In equilibrium, the choice probabilities will be P j(a) = Λj(a; vj). And let

Λ−j(v−j) = (Λ1(v1), . . . ,Λj−1(vj−1),Λj+1(vj+1), . . . ,Λ|J |(v|J |)),

so that in equilibrium P−j = Λ−j(v−j). Aguirregabiria and Mira (2007) show that in equi-
librium, the choice-specific value functions are equal to

vj(x, aj) = uj(x, aj;P−j, θu) + β
∑
x′

f j(x′ | x, aj;P−j, θf )Γ
j(x′; θ, P ),

where
Γj(θ, P ) = (I − βF (θf , P ))−1

∑
aj

P j(aj) ∗
(
uj(aj;P−j, θu) + e(aj;P j)

)
maps into ex-ante (or integrated) value function space. Here, e (aj;P j) stacks the values of
e(x, aj;P j) ≡ E[εj(aj) | x, aj, P j], as defined in Aguirregabiria and Mira (2007, Equation
11), and F (θf , P ) is an unconditional state transition matrix with elements F (θf , P ){k, l} =∑

a∈AJ

(
ΠJ

j=1P
j(aj | x = k)

)
f(x′ = l | x, a; θf ).9 They then define the NPL operator,

Ψ(θ, P ), such that Ψj(θ, P ) = Λj(Γj(θ, P )) and combining all players yields the follow-
ing fixed-point condition that describes any Markov perfect equilibrium (Aguirregabiria and

8We note that the choice-specific value functions, vj , are also often referred to as conditional value
functions.

9See footnote 6 in Aguirregabiria and Mira (2007).
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Mira 2007, Lemma 1):
P = Ψ(θ, P ).

While this equilibrium representation based on the NPL operator is often useful, we
will ultimately want to work with an alternative representation when implementing our new
estimator. This alternative arises due to a change of variables from P space to v space. (See
Section 3.3 for a detailed discussion of the importance of this change.) Define the function

Φj(x, aj; vj, v−j, θ) = uj(x, a; Λ−j(v−j), θu) + β
∑
x′

f j(x′ | x, aj; Λ−j(v−j), θf )S(v
j(x′)),

where Φ : Θ × R|J |×|X |×|A| → R|J |×|X |×|A| and S(·) is McFadden’s social surplus function.10

This Φ(·) function allows us to characterize the equilibrium with an alternative fixed-point
equation, as described in the following Lemma.

Lemma 1. (Representation Lemma) Under Assumptions 1–4, choice-specific value functions
characterize a Markov perfect equilibrium for θ if and only if vj(x, aj) = Φj(x, aj; θ, vj, v−j)

for all (j, x, a) ∈ J × X ×A. Or more succinctly,

v = Φ(θ, v).

3 The k-EPL Estimator

This section describes the k-EPL estimator and discusses its asymptotic and finite-sample
properties, as well as computational aspects of its implementation in dynamic discrete choice
games. We begin by discussing maximum likelihood estimation, subject to an equilibrium
constraint based on some nuisance parameter, Y . The model is parameterized by a finite-
dimensional vector, θ ∈ Θ ⊂ R|Θ|, and a constraint G(θ, Y ) = 0 where Y ∈ Y ⊂ R|Y| and
G : Θ×Y → R|Y|. The true parameter values are θ∗ and Y ∗, with G(θ∗, Y ∗) = 0. Note that
there may be other values of Y satisfying the constraint at θ∗, but we will assume that the
data are generated from only one such value, a common assumption in the literature.

The alternative statements of the equilibrium conditions in Section 2 yield two potential
choices for Y and the corresponding constraint. Our asymptotic consistency and efficiency
results in this section do not depend on the choice of nuisance parameter, but this choice
can have serious implications for the computational implementation of the k-EPL estimator.
So, for computational purposes we ultimately use the choice-specific value functions as the

10For example, S(vj(x)) = ln(
∑

aj exp(vj(x, aj))+ γ̄ when the private values are i.i.d. and follow the type
1 extreme value distribution, where γ̄ is the Euler-Mascheroni constant.
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nuisance parameter (Y ≡ v), and the constraint comes from the equation in Lemma 1
(v−Φ(θ, v) = 0). We discuss the computational concerns in more detail in Section 3.3. But
for now, we present the asymptotic theory with the generic nuisance parameter, Y .

Let wi for i = 1, . . . , N denote the observations from N independent markets, and define

QN(θ, Y ) ≡ N−1

N∑
n=1

qi(θ, Y ) = N−1

N∑
i=1

lnPr(wi | θ, Y ),

where qi(θ, Y ) ≡ lnPr(wi | θ, Y ). Furthermore, let Q∗(θ, Y ) ≡ E[QN(θ, Y )].

Assumption 5. (a) The observations {wi : i = 1, . . . , N} are i.i.d. and generated by a
single equilibrium (θ∗, Y ∗). (b) Θ and Y are compact and convex and (θ∗, Y ∗) ∈ int(Θ×Y).
(c) QN(θ, Y ) and Q∗(θ, Y ) are twice continuously differentiable. Q∗ has a unique maximum
in Θ×Y subject to G(θ, Y ) = 0, and the maximum occurs at (θ∗, Y ∗). (d) G(θ, Y ) is thrice
continuously differentiable and ∇YG(θ∗, Y ∗) is non-singular.

Assumptions 5(a)-(c) echo standard identification assumptions. We note that assuming
that Q∗ has a unique maximum does not rule out games with multiple equilibria. Non-
singularity of the Jacobian in (d) is the defining feature of regular Markov perfect equilibria
in the sense of Doraszelski and Escobar (2010). Regularity essentially means that the equi-
librium is locally isolated and we can apply the implicit function theorem to obtain Y (θ)

locally.11

One method to estimate these models is via constrained maximum likelihood:(
θ̂MLE, ŶMLE

)
= arg max

(θ,Y )∈Θ×Y
QN(θ, Y )

s.t. G(θ, Y ) = 0.

An equivalent statement is θ̂MLE = arg maxθ QN(θ, Y (θ)), where G(θ, Y (θ)) = 0 and
ŶMLE = Y (θ̂MLE). Pseudo-likelihood estimation replaces Y (θ) with some other mapping.
Aguirregabiria and Mira (2007) define Y ≡ P and replace Y (θ) ≡ P (θ) with their Ψ(θ, P̂k−1)

for the k-th iteration in the k-NPL sequence. However, this procedure suffers from the issues
discussed in Section 1.

Our k-step Efficient Pseudo-Likelihood (k-EPL) sequence instead uses a “Newton-like”
step, which provides a good approximation to the full Newton step but uses a fixed value
of ∇YG(θ, Y )−1; this value varies between steps but does not vary as the optimizer searches
over different values θ within each step. Algorithm 1 below defines our sequential estimation

11Aguirregabiria and Mira (2007) directly assume the local existence of Y (θ), instead of appealing to the
implicit function theorem.
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procedure. It uses our Newton-like mapping, Υ(·), which is a function of an initial compound
parameter vector, γ = (θ, Y ), and an additional (possibly different) value of θ.

Algorithm 1. (k-step Efficient Pseudo-Likelihood, or k-EPL)

• Step 1: Obtain strongly
√
N-consistent initial estimates γ̂0 = (θ̂0, Ŷ0).

• Step 2: For k ≥ 1, obtain parameter estimates iteratively:

θ̂k = argmax
θ∈Θ

QN (θ,Υ(θ, γ̂k−1))

where
Υ(θ, γ̂k−1) = Ŷk−1 −∇YG(θ̂k−1, Ŷk−1)

−1G(θ, Ŷk−1)

and update the auxiliary parameters:

Ŷk = Υ(θ̂k, γ̂k−1).

• Step 3: Increment k and repeat Step 2 until desired value of k is reached or until
numerical convergence.

This procedure enjoys some nice econometric properties, both asymptotically and in finite
samples. These properties arise from some convenient features of the Υ(·) function, which
are detailed in the following lemma.

Lemma 2. Let Υ(θ, γ) denote the operator defined in Algorithm 1 and define Yθ ≡ Y (θ)

and γθ ≡ (θ, Yθ). Under Assumption 5, if ∇YG(θ, Yθ) is non-singular, then the following
properties hold:

1. Roots of G and fixed points of Υ are identical: Υ(θ, γθ) = Y (θ) ⇐⇒ G(θ, Yθ) = 0.

2. ∇θΥ(θ, γθ) = ∇θY (θ).

3. ∇γΥ(θ, γθ) = 0 (Zero Jacobian Property).

Lemma 2 is the key to most of the results in this section, which arise from applying the lemma
at (θ∗, γ∗) and (θ̂MLE, γ̂MLE). For now, we note that Result 3 of Lemma 2 is analogous to the
“zero Jacobian” property from Proposition 2 of Aguirregabiria and Mira (2002), which was the
key to both their efficiency results and the finite-sample convergence results of Kasahara and
Shimotsu (2008) for single-agent k-NPL. By utilizing Newton-like steps on the equilibrium
constraint, the k-EPL algorithm restores this zero Jacobian property in dynamic games.
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One notable difference between k-EPL and some other sequential estimators is that k-
EPL is initialized from a consistent estimate of both the structural parameter and the nui-
sance parameter, while other estimators – including k-NPL – only require an initially consis-
tent estimate of the (nuisance) CCPs. Other examples include the finite-dependence-based
estimators (Hotz and Miller (1993); Arcidiacono and Miller (2011)) and inequality-based
estimators (Bajari et al. (2007)). While none of these other estimators offer efficiency or
convergence guarantees as k → ∞, they can be used to obtain a consistent parameter esti-
mate for initializing k-EPL. If the model exhibits finite-dependence, then finite-dependence-
based estimators can be particularly attractive for obtaining initial estimates because of
there computational simplicity. However, we note that the example models in our Monte
Carlo simulations and empirical application may not have the finite dependence property
because exit is not permanent. So, we instead use a 1-NPL estimate for initialization.12

3.1 Asymptotic Properties of k-EPL

One implication of Lemma 2 is that k-EPL then gives a sequence of asymptotically efficient
estimators that converges almost surely in large samples. We state this result formally in
the following Theorem.

Theorem 1. (Asymptotic Properties of k-EPL) Under Assumption 5, the k-EPL estimates
computed with Algorithm 1 satisfy the following for any k ≥ 1:

1. (Consistency) γ̂k = (θ̂k, Ŷk) is a strongly consistent estimator of (θ∗, Y ∗).

2. (Efficiency)
√
N(θ̂k− θ∗)

d→ N(0,Ω∗−1
θθ ), where Ω∗

θθ is the information matrix evaluated
at θ∗.

3. (Large Sample Convergence) There exists a neighborhood of γ∗ = (θ∗, Y ∗), B∗, such
that limk→∞ γ̂k = γ̂MLE almost surely for any γ̂0 ∈ B∗. In other words,

Pr
[
lim
k→∞

γ̂k = γ̂MLE

∣∣∣ γ̂0 ∈ B∗
]
= 1.

The results of Theorem 1 for k-EPL in games are shared by k-NPL in single-agent
models, but not games. In short, the zero Jacobian property ensures that γ̂k = (θ̂k, Ŷk)

is asymptotically orthogonal to γ̂k−1, so that using γ̂k−1 is asymptotically equivalent to using
12Finite dependence is more difficult to establish in entry/exit games without a permanent exit decision

that leads directly to a terminal state property. See, e.g., the discussion in Section 5.2 of Arcidiacono and
Ellickson (2011). However, Arcidiacono and Miller (2019) show how to derive finite dependence in a class
dynamic games that does not require a terminal state.
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γ∗ = (θ∗, Y ∗) at each step. This drives the consistency (Result 1) and asymptotic equivalence
to MLE (Result 2) of each step. Intuitively, an EPL step is similar to a Newton step on
the full maximum likelihood problem, although iterating on that procedure is notoriously
unstable unless properly regularized.13 Our Monte Carlo simulations in Section (4) show
that k-EPL is stable without further regularization.

3.2 Iteration to the Maximum Likelihood Estimate

While the asymptotic distribution is insensitive to iteration, we can obtain substantial finite-
sample improvements by iterating and can even compute the finite-sample MLE by iterating
to convergence. In this section, we proceed with a formal econometric analysis of the local
convergence rate of the iterations to the maximum likelihood estimator, and we discuss
the implications for finite sample performance. Later on, the finite sample properties are
illustrated in the Monte Carlo simulations in Section 4.

Our results for the convergence rate to MLE are similar to those of the single-agent version
of k-NPL in Aguirregabiria and Mira (2002), which also has the zero Jacobian property. In
their Monte Carlo simulations, single-agent k-NPL iterations exhibit rapid finite-sample
improvements and reliably converged to the finite-sample MLE. Kasahara and Shimotsu
(2008) then provided a formal econometric explanation for these results. The analysis of
k-EPL’s finite sample properties in this section is similar but also applies to games.

The only additional requirement for our finite-sample results is that the Jacobian of the
equality constraints, G, with respect to Y is nonsingular at the finite-sample MLE.

Assumption 6. ∇YG(θ̂MLE, ŶMLE) is non-singular.

Assumption 6 guarantees the existence of an implicit function, Y (θ), around θ̂MLE and
also that the quasi-Newton mapping, Υ(θ, γ̂MLE) is valid. Assumption 5 is enough to
guarantee that Assumption 6 is satisfied almost surely as N → ∞, since it implies that
det
(
∇YG

(
θ̂MLE, ŶMLE

))
a.s.→ det (∇YG (θ∗, Y ∗)) ̸= 0 by continuity of det(·), continuity of

∇YG(·) (Assumption 5(d)), and strong consistency of γ̂MLE. Furthermore, the set of singular
matrices has measure zero. So, we view this as a relatively mild (but important) assumption.

Theorem 2. (Local Convergence Results for Iterating to MLE) Suppose Assumptions 5 and
6 hold and that the optimization problem in Step 2 of Algorithm 1 has a unique solution for
all k ≥ 1. Then,

1. The MLE is a fixed point of the EPL iterations: if γ̂k−1 = γ̂MLE, then γ̂k = γ̂MLE.
13Train (2009) discusses the need to alter the step size in order to obtain global convergence (pp. 189-191).

Nesterov (2004) also discuses divergence (Section 1.2).
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2. For all k ≥ 1,

γ̂k − γ̂MLE = Op(N
−1/2||γ̂k−1 − γ̂MLE||+ ||γ̂k−1 − γ̂MLE||2).

3. W.p.a. 1 as N → ∞, for any ε > 0 there exists some neighborhood of γ̂MLE, B, such
that the EPL iterations define a contraction mapping on B with Lipschitz constant,
L < ε.

The first result of Theorem 2 establishes that the MLE is a fixed point of the k-EPL iter-
ations in a finite sample, similar to Aguirregabiria and Mira (2002, Proposition 3) for single-
agent k-NPL. The second result gives an asymptotic analysis of convergence to MLE, which
provides a theoretical explanation of why we should expect iteration to yield improvements
in finite samples. This result is analogous to Proposition 2 of Kasahara and Shimotsu (2008),
although their result only applies in the single-agent case. In short, even though iteration on
EPL provides no improvement up to Op(N

−1/2), it still yields higher-order improvements. To
see why, suppose the initial estimates are such that γ̂0 − γ∗ = Op(N

−b) for b ∈ (1/4, 1/2], so
that ||γ̂0−γ̂MLE|| = Op(N

−b).14 Repeated substitution gives ||γ̂k−γ̂MLE|| = Op(N
−(k−1)/2−2b).

In particular, in the case where the state space is finite and frequency or kernel estimates
are used, b = 1/2 and ||γ̂k − γ̂MLE|| = Op(N

−(k+1)/2), where N−(k+1)/2 → 0 as k → ∞ for
N > 1. Our own Monte Carlo simulations in Section 4 exhibit such improvements.

The third result in Theorem 2 allows us to consider EPL iterations as a computationally
attractive algorithm for computing the MLE. It establishes that we can expect the EPL
iterations to be a local contraction around the MLE in the finite sample with a very fast
convergence rate. The full proof appears in the appendix, but it essentially proceeds by
noting that the k-EPL sequence satisfies γ̂k = HN(γ̂k−1), where γ̂MLE is a fixed point of
the function HN . And due to the zero-Jacobian property in Lemma 2 (Result 3), we obtain
∇γHN(γ̂MLE)

a.s.→ 0.15

For the population analogue of the EPL iterations, the convergence rate is then super-
linear. However, we only have access to finite samples in practice, so we should expect the
convergence rate to be linear with a small Lipschitz constant, implying that we’ll need only
a few iterations to achieve convergence. We can therefore use EPL iterations to compute
the MLE even when a consistent γ̂0 is unavailable. We can simply use multiple starting
values, iterate to convergence, and use the converged estimate that provides the highest
log-likelihood.16 We demonstrate this usage of k-EPL with Monte Carlo simulations in the

14For b ∈ (1/4, 1/2], we have γ̂0 − γ̂MLE = γ̂0 − γ∗ − (γ̂MLE − γ∗) = Op(N
−b) + Op(N

−1/2) = Op(N
−b) .

Additionally, this can be used to show higher-order equivalence to the MLE.
15This drives the Neyman orthogonality discussed in the introduction.
16Aguirregabiria and Mira (2007) suggest a similar procedure to find ∞-NPL when no initial consistent
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appendix and find that it works well.
Aside from k-EPL, there are two potential alternative algorithms for computing the MLE:

the nested fixed-point (NFXP) algorithm á la Rust (1987) and the MPEC approach proposed
by Su and Judd (2012) and extended to dynamic games by Egesdal et al. (2015). The NFXP
algorithm searches over θ in an outer loop and finds Yθ such that G(θ, Yθ) = 0 in an inner
loop. MPEC leverages modern optimization software to search over θ and Y simultaneously,
only imposing that G(θ, Y ) = 0 at the solution. The algorithm of choice may depend on the
structure of the model.

While this section discusses the k-EPL algorithm in the context of a general constrained
maximum-likelihood problem, we are ultimately focused on estimating dynamic discrete
choice games of incomplete information. As discussed in the introduction, NFXP is of-
ten computationally unattractive—or even infeasible—in such games.17 MPEC, however,
remains feasible and performs well, as demonstrated by Egesdal et al. (2015). The key dif-
ference here between MPEC and k-EPL is that k-EPL will be able to more heavily exploit
the structure of the problem.18 In Section 3.3, we show that — much like k-NPL in single-
agent models — common modeling assumptions lead to EPL iterations composed of two
easily-computed parts: solving linear systems to form pseudo-regressors, followed by solving
an unconstrained, globally concave maximization problem á la static logit/probit with those
pseudo-regressors. Neither of these operations require sophisticated commercial optimiza-
tion software; and repeating them just a few times may ultimately be more computationally
attractive than using MPEC to simultaneously solve for all variables in a non-concave, large-
scale, constrained maximization problem.

3.3 Computational Details and Choice of Nuisance Parameter

k-EPL is particularly useful when we are interested in estimating the flow utility parameters,
θu. In many cases – including our Monte Carlo experiments – the transition parameter, θf ,
is known in advance. So, we focus on estimating only the flow utility parameters and let
θ ≡ θu. Alternatively, θf can be estimated in a first stage, with θu then estimated via partial
maximum likelihood. Similarly to single-agent k-NPL, k-EPL iterations based on this partial
MLE problem yield asymptotic equivalence and finite-sample convergence to partial MLE

estimate is available, and multiple starting values are often used when computing the maximum likelihood
estimate with other methods (Su and Judd (2012); Egesdal et al. (2015)).

17We note that NFXP still performs well in single-agent dynamic models. See Doraszelski and Judd (2012)
and Arcidiacono, Bayer, Blevins, and Ellickson (2016) for details on the computational burden of computing
equilibria in discrete-time dynamic discrete games.

18Egesdal et al. (2015) exploit sparsity patterns in their MPEC implementation but do not further exploit
other features of the problem structure.
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because the zero Jacobian property still applies.

Assumption 7. (Linear Utility Index) uj(θ, x, aj, P−j) = h(x, aj, P−j)′θ.

Assumption 8. (Log-Concave CCP Mapping) Λ(·) is log-concave.

Assumption 7 requires the flow utilities to be linear in θ, which is a standard assumption
for dynamic discrete choice models.19 Assumption 8 requires log-concavity of the mapping
from choice-specific values into CCPs. A sufficient condition for this is that the distribution of
private shocks, g(·), is log-concave (Caplin and Nalebuff (1991)). Consequently, Assumption
8 is satisfied in the ubiquitous case of logit shocks, as well as when shocks follow a normal
distribution. These two assumptions have important computational implications, which is
the focus of the rest of this section.

The choice of nuisance parameter, Y , does not affect the asymptotic results in Section
3, but it does have tremendous implications for computation. In order to provide a compu-
tationally simple estimator, we use the choice-specific values as the nuisance parameter and
the equilibrium condition from Lemma 1.

Assumption 9. (Equilibrium in Choice-Specific Values) Y ≡ v and G(θ, v) ≡ v − Φ(θ, v).

Coupled with Assumptions 7 and 8, the choice of nuisance parameter and constraint in
Assumption 9 leads to some convenient computational properties.

By Assumption 7, we have uj(θ, x, aj, P−j) = h(x, aj, P−j)′θ. Because P−j = Λ−j(v−j),
we can re-write this in terms of v: uj(θ, x, aj, v−j) = h(x, aj, v−j)′θ. Inspecting the form of
Φ(θ, v), we see that it will be linear in θ and therefore so will G(θ, v) = v − Φ(θ, v):

G(θ, v) = H(v)θ + z(v),

where H(·) is a matrix and z(·) is a vector. As a result, Υ(θ, γ̂k−1) is also linear in θ:

Υ(θ, γ̂k−1) = v̂k−1 −∇vG(θ̂k−1, v̂k−1)
−1G(θ, v̂k−1)

= v̂k−1 −∇vG(θ̂k−1, v̂k−1)
−1 (H(v̂k−1)θ + z(v̂k−1))

= −∇vG(θ̂k−1, v̂k−1)
−1H(v̂k−1)θ

+ v̂k−1 −∇vG(θ̂k−1, v̂k−1)
−1z(v̂k−1)

≡ A(γ̂k−1)θ + b(γ̂k−1).

19See, e.g., Rust (1987); Aguirregabiria and Mira (2002, 2007); Bajari et al. (2007); Pakes et al. (2007);
Pesendorfer and Schmidt-Dengler (2008); Arcidiacono and Miller (2011); Egesdal et al. (2015); Bugni and
Bunting (2021).
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Additionally, the optimization step in Algorithm 1 (k-EPL) becomes

θ̂k,EPL = arg max
θ∈Θ

N−1

N∑
i=1

∑
t

∑
j

ln Λ
(
Υ(xt, a

j
t ; θ, γ̂k−1)

)
.

It turns out that this is a concave optimization problem, as described in the next proposition.

Proposition 1. Under Assumptions 7-9, (i) Υ(θ, γ̂k−1) = A(γ̂k−1)θ+b(γ̂k−1), where A(γ̂k−1) ≡
−∇vG(θ̂k−1, v̂k−1)

−1H(v̂k−1) and b(γ̂k−1) ≡ v̂k−1−∇vG(θ̂k−1, v̂k−1)
−1z(v̂k−1); and (ii) For k-

EPL, θ̂k = arg maxθ∈Θ N−1
∑N

i=1

∑
t

∑
j ln Λ

(
Υ(xt, a

j
t ; θ, γ̂k−1)

)
, where the objective func-

tion is concave in θ.

Proof. Result (i) follows from the analysis immediately preceding the proposition. Result
(ii) arises because ln Λ(·) is concave by Assumption 8 and Υ(·) is linear in θ (Result (i)).

Proposition 1 shows how our choice of nuisance parameter and constraint lead to a com-
putationally simple estimation sequence. Computing A(γ̂k−1) and b(γ̂k−1) in Proposition 1
requires computing ∇vG(θ̂k−1, v̂k−1)

−1H(v̂k−1) and ∇vG(θ̂k−1, v̂k−1)
−1z(v̂k−1), respectively,

which are the solutions to linear systems. Importantly, these linear systems can be solved
outside the optimization search in Step 2 of Algorithm 1. So, the computation procedure
alternates between i) computing “pseudo-regressors” by solving linear systems; and ii) maxi-
mizing a concave optimization problem that using the pseudo-regressors as inputs. Further-
more, ∇vG(θ̂k−1, v̂k−1) can be computed analytically when Λ(·) and its derivative have an
analytic form, such as the logit or probit cases.

Notably, this computational simplicity is not available if the CCPs are chosen as the
nuisance parameter. That is, when Y ≡ p and G(θ, P ) ≡ P −Ψ(θ, P ). In this case,

Υ(θ, γ̂k−1) = P̂k−1 −
(
I −∇PΨ(θ̂k−1, P̂k−1)

)−1 (
P −Ψ(θ, P̂k−1)

)
and the optimization step in the k-EPL algorithm solves

θ̂k,EPL = arg max
θ∈Θ

N−1

N∑
i=1

∑
t

∑
j

lnΥ(xt, a
j
t ; θ, γ̂k−1).

Several computational issues arise. First, instead of solving linear systems once before the
optimization step, we must repeatedly solve linear systems throughout the optimization
because of the need to compute (I −∇PΨ(θ̂k−1, P̂k−1))

−1Ψ(θ, P̂k−1) for each new value of θ
in the search. Second, we will lose the guarantee of concavity of the optimization problem in
each step. Even though Ψ(θ, P̂k−1) is log-concave in θ, this does not guarantee log-concavity
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of Υ(θ, γ̂k−1) because affine transformations of log-concave functions are not necessarily log-
concave. And third, the Newton-like steps rely on an implicit linearization: even though
Ψ(θ, P̂k−1) maps into the probability simplex, Υ(θ, γ̂k−1) can arrive at values outside the
simplex.20 Thus, we would need to add constraints to the optimization problem to ensure
Υ(θ, γ̂k−1) does not leave the unit simplex. Whereas, the formulation in v-space does not
require any constraints because v can take any value on a Cartesian product of the real line.

3.3.1 Comparison to Other Methods

While our EPL iterations with Y ≡ v have a similar computational structure to NPL iter-
ations (with Y ≡ P ) insofar as both require solving linear systems then a globally concave
optimization problem, the dimension of the linear systems in k-EPL is larger. Aguirregabiria
and Mira (2007) show that k-NPL requires solving |J |(|Θ|+1) different systems of linear equa-
tions, each of dimension |X | , resulting in a worst-case bound of O((|Θ|+1)|X |3|J |) flops.21

On the other hand, k-EPL requires solving |Θ|+1 different systems of linear equations, each
of dimension |J ||X ||A|, resulting in a larger worst-case bound of O((|Θ| + 1)|X |3|J |3|A|3)
flops. Sparsity of the linear systems – a common feature in dynamic discrete choice models
(Egesdal et al. (2015)) – can lower these bounds for both k-NPL and k-EPL. Fortunately,
in practice, in our largest Monte Carlo experiment the relative difference is much lower than
suggested by the worst-case bounds.

We then see a tradeoff between efficiency and computational burden, a common theme
in estimating dynamic games. This theme appears in Bugni and Bunting’s (2021) analysis
comparing their efficient k-MD (minimum distance) estimator to k-NPL. Even in what is
essentially the smallest scale game possible – 2 players, 2 actions, 4 states – they report
for k-MD a large increase in computational burden over k-NPL, with individual iterations
taking about 12 to 26 times longer on average, depending on the number of iterations. It is
perhaps reasonable to expect that this difference will grow with the size of the game, which
is a concern for practitioners who must balance econometric efficiency with computational
feasibility. Our k-EPL estimator, on the other hand, induces a much less severe increase in
computational burden while retaining efficiency. In Section 4, we also explore a 2 player, 2
action, 4 state game and find that the difference between computational time for k-EPL and
k-NPL iterations is negligible in that setting. Additionally, we explore a much larger-scale
game – 5 players, 2 actions, 160 states – that is more representative of empirically relevant
models. In this larger-scale game, we find that there is indeed an increase in time per iteration

20Technically, Ψ(·) maps into a Cartesian product of the interior of the unit simplex due to each player
having their own strategies.

21There are |Θ|+ 1 systems for each of the |J | players.
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for k-EPL relative to k-NPL, but this increase in the larger-scale game (between 4 to 8 times)
is not even as large as the 12 to 26-fold increase for k-MD in the much smaller-scale game.

Even with an increase in computation time per iteration relative to k-NPL, k-EPL can
still ultimately be more attractive than k-NPL. First, its asymptotic efficiency, convergence
properties, and rapid finite-sample improvements are attractive features that may be worth
the increased computational burden of each iteration. Second, even in cases where both k-
EPL and k-NPL converge to consistent estimates, k-EPL enjoys a much faster convergence
rate than k-NPL, resulting in fewer iterations to convergence. So, iterating to convergence
on k-EPL to obtain the finite-sample MLE can still be faster than computing the ∞-NPL
estimator (if it converges), even though each individual iteration takes longer.

In many applications, the dominant source of computational burden for either estimator
will often be the size of the state space, |X |, since it can be large when |A| and |J | are small
and also tends to grow with both |A| and |J | in dynamic games. One simple yet salient
illustration arises when the state is determined by the previous actions of the players, so that
|X | = |A||J |. Thus, as |J | grows, |X | ultimately becomes the main source of computational
burden for the linear systems in both k-NPL and k-EPL. To help deal with large state
spaces, Aguirregabiria and Mira (2007) show that the linear systems required for k-NPL can
be solved via an iterative process reminiscent of value function Bellman iteration, so that
their worst-case computational burden reduces to O((|Θ|+1)|X |2|J |). Similarly, k-EPL can
also use alternative iterative methods to solve the linear systems such as Krylov subspace
methods, although it cannot use Bellman-style iteration.

3.4 Single-Agent Dynamic Discrete Choice

We conclude this section by showing that k-NPL in a single-agent dynamic discrete choice
model (Aguirregabiria and Mira, 2002) is equivalent to k-EPL with a slightly modified defi-
nition of Υ(·). Here, we can work directly in probability space, Y ≡ P , and let

G(θ, P ) = P −Ψ(θ, P ),

with Ψ(θ, P ) defined as in Section 2 but with only a single agent.
We now have

∇PG(θ, P ) = I −∇PΨ(θ, P ).

Proposition 2 from Aguirregabiria and Mira (2002) shows that ∇PΨ(θ, Pθ) = 0, where
Pθ = Ψ(θ, Pθ). Thus, ∇PG(θ, Pθ) = I for all θ. So, we can use a modified definition of Υ(·),
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where ∇PG(θ̂k−1, P̂k−1) is simply replaced with the identity matrix, I, and we obtain

Υ(θ, γ̂k−1) = P̂k−1 − I−1
(
P̂k−1 −Ψ(θ, P̂k−1)

)
= Ψ(θ, P̂k−1).

This modified implementation of k-EPL is identical to k-NPL.
This equivalence of k-NPL to k-EPL in single agent models is unsurprising for two reasons.

First, we stated in the introduction that the motivation for k-EPL is to extend the nice
properties of k-NPL from single-agent models to dynamic games. So there should be, at the
very least, substantial conceptual overlap between the methods. Second, Aguirregabiria and
Mira (2002, Proposition 1(c)) show that their policy iterations are equivalent to Newton-like
iterations on the (ex-ante) value function in single-agent models. Since k-EPL is built around
Newton iterations, such an equivalence is again suggestive of the relationship shown here.

4 Monte Carlo Simulations

In this section, we present Monte Carlo simulation results to illustrate k-EPL’s finite sample
properties. The simulations presented here are based on the dynamic game of entry and
exit in Example 1, parameterized to match a model with five heterogeneous firms from
Aguirregabiria and Mira (2007). The appendix includes further Monte Carlo simulations for
two other models: (i) a small-scale dynamic model from Pesendorfer and Schmidt-Dengler
(2008); and (ii) a static game from Pesendorfer and Schmidt-Dengler (2010). The dynamic
model in Pesendorfer and Schmidt-Dengler (2008) exhibits multiple – possibly best-reply-
unstable – equilibria (with data generated from only one of them), which can be challenging
for other iterative methods. The static game in Pesendorfer and Schmidt-Dengler (2010)
provides a setting where we can easily compare ∞-EPL to the MLE computed via the
nested fixed-point algorithm.

The simulations in this section are based on an empirically relevant model that forms the
basis of many applications but has also been used (sometimes in simplified forms) in simu-
lation studies by Kasahara and Shimotsu (2012), Egesdal et al. (2015), Bugni and Bunting
(2021), Blevins and Kim (ming), and Aguirregabiria and Marcoux (2021). In particular,
Aguirregabiria and Marcoux (2021) discuss in detail how the spectral radius of the NPL
operator increases with the strength of competition in the model. As such, we take as our
baseline case the parameters as Experiment 2 of Aguirregabiria and Mira (2007). We then
follow Aguirregabiria and Marcoux (2021) and increase the competitive effect parameter,
θRN to investigate how k-EPL and k-NPL behave as the spectral radius of the NPL operator
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increases to the point of instability and beyond.
The model is a dynamic entry-exit game with |J | = 5 firms that operate in N independent

markets. The firms have heterogeneous fixed costs. There is a single common market state,
the market size, which can take one of five values: sit ∈ {1, 2, 3, 4, 5}. Market size follows a
5 × 5 transition matrix and we use the same transition matrix as Aguirregabiria and Mira
(2007). The other observable states are the incumbency statuses of the five firms, denoted
aji,t−1. There are therefore 5×25 = 160 distinct states in the model. Hence the state in market
i at time t can be represented in vector form as xit = (sit, a

1
i,t−1, a

2
i,t−1, a

3
i,t−1, a

4
i,t−1, a

5
i,t−1).

Given the state of the model at the beginning of the period, firms simultaneously choose
whether to operate in the market, ajit = 1, or not, ajit = 0. They make these decisions in
order to maximize expected discounted profits, where the period profit function for an active
firm is

ūj(xit, a
j
it = 1, a−j

it ; θ) = θFC,j + θRSsit − θRN ln

(
1 +

∑
l ̸=j

alit

)
− θEC(1− aji,t−1)

and ūj(xit, a
j
it = 0, a−j

it ; θ) = 0 for inactive firms. The game is dynamic because firms
must pay an entry cost θEC to enter the market and because firms have forward-looking
expectations about market size and entry decisions of rival firms. The private information
shocks εjit(a

j
it) are independent and identically distributed across time, markets, players, and

actions and follow the standard type I extreme value distribution.
We choose the model parameters following Aguirregabiria and Mira (2007) and Aguirre-

gabiria and Marcoux (2021). In particular, the fixed costs for the five firms are θFC,1 = −1.9,
θFC,2 = −1.8, θFC,3 = −1.7, θFC,4 = −1.6, and θFC,5 = −1.5. The coefficient on market size is
θRS = 1 and the common firm entry cost is θEC = 1. The only parameter that differs across
our three experiments is the competitive effect θRN, which we set to be θRN = 1 in Exper-
iment 1, θRN = 2.5 in Experiment 2, and θRN = 4 in Experiment 3. For easy comparison,
these parameter values correspond closely to the “very stable,” “mildly unstable,” and “very
unstable” cases of Aguirregabiria and Marcoux (2021).

For each experiment, we carry out 1000 replications using two sample sizes, N = 1600

and N = 6400, noting that N = 1600 is the sample size used by Aguirregabiria and Mira
(2007). For each replication and each sample size, we draw a sample of size N . With this
sample we calculate the iterative k-NPL and k-EPL estimates. For k-NPL, we follow the
original Aguirregabiria and Mira (2007) implementation. We initialize k-NPL with estimated
semiparametric logit choice probabilities. We then initialize 1-EPL using the parameter
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estimates and value function from the 1-NPL iteration, which is consistent even in cases
where further iteration may lead to inconsistency. Aside from the initialization, and using
the same sample, the k-EPL iterations proceed independently from the k-NPL iterations. For
k-EPL, as before we represent the equilibrium condition in terms of v as G(θ, v) = v−Φ(θ, v)

and use analytical derivatives for the Jacobian ∇vG(θ, v).
We report estimates from one, two, and three iterations of each estimator as well as

the converged values, which we denote as ∞-NPL and ∞-EPL. We limit the number of
iterations to 100 for both estimators, and if the algorithm has not converged we use the
estimate from the final iteration. We use the same convergence criteria for both estimators:
at each iteration we check the sup norm of the change in the parameter values and choice
probabilities. Based on the criteria used by Aguirregabiria and Mira (2007), if both are below
10−2/K, where K is the number of parameters, we terminate the iterations and return the
final converged estimate.

[Figure 1 about here.]

Figure 1 shows the Monte Carlo distributions of two key parameter estimates in the
model: θ̂RN, the competitive effect, and θ̂EC, the entry cost. Each panel compares two
histograms: the histogram above in dark gray corresponds to ∞-EPL and the histogram
below in light gray is for ∞-NPL. These histograms are based on data for 1,000 replications
of each experiment with 6,400 observations.

The left panels of Figure 1 show the distributions of θ̂RN, which is related to the strength
of competition in the market and is closely related with the spectral radius of the NPL
operator (while the spectral radius of the EPL operator is always zero). Indeed, we can
see that as the competitive effect becomes large the distribution of ∞-NPL estimates is
truncated at around θ̂RN = 2.5 in Experiment 2. It remains concentrated around θ̂RN = 2.6

in Experiment 3 even though the value used in the data generating process was θRN = 4.
Yet for all experiments the distributions of ∞-EPL estimates are centered around the true
values.

Although the true entry cost parameter is fixed at θEC = 1 in all three experiments, the
distribution of estimates can be affected when we vary the competitive effect from θRN = 1

to θRN = 4. In the right panels of Figure 1, the truncation from above of θ̂RN in the ∞-NPL
distribution induces truncation from below in θ̂EC, as lower estimated values of competition
result in higher estimated entry costs, leading to distortion of both distributions and to
parameter estimates that would lead a policy-maker to possibly very different economic
implications. In Experiment 3, although the distribution of ∞-NPL estimates again appear
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to be normally distributed for both parameters, they are biased and are not centered around
the true values.

[Figure 2 about here.]

Figure 2 shows the distributions of iteration counts and computational times for ∞-EPL
and ∞-NPL across the three experiments.22 The histograms in the left panels show the
distribution of iteration counts required to achieve convergence for both estimators. Recall
that the maximum number of iterations allowed was 100. ∞-EPL requires fewer iterations
for all experiments, especially for Experiments 2 and 3 where ∞-NPL sometimes fails to
converge in Experiment 2 and always fails to converge in Experiment 3. ∞-EPL converged
for all replications in all experiments.

The histograms in the right panels of Figure 2 show the distribution of total compu-
tational time, in seconds, across the 1000 replications. In Experiment 1, where k-NPL is
stable, ∞-NPL is faster even though it requires more iterations on average. In other words,
each k-EPL iteration is more expensive on average, but fewer are required. This is in line
with the analysis in Section 3.3. However, in Experiments 2 and 3 the computational times
for ∞-NPL increase as it requires more iterations, eventually overtaking the time required
for ∞-EPL yet still frequently (Experiment 2) or always (Experiment 3) failing to converge.

Summary statistics for all parameter estimates and all three experiments can be found in
Tables 1–6. Each table reports summary statistics for 1-, 2-, 3-, and ∞-NPL and 1-, 2-, 3-,
and ∞-EPL over the 1000 Monte Carlo replications for N = 1600 or N = 6400. The upper
two panels report the mean bias and mean square error (MSE) for each parameter and each
sequential estimator. The next panel reports summary statistics for the number of iterations
completed until either convergence or failure at 100 iterations. This includes the median,
maximum, and inter-quartile range (IQR) of iteration counts across the replications as well
as the number of replications for which ∞-NPL failed to converge. Finally, the bottom
panel reports the computational times for each estimator including the mean and median
total time (for all completed iterations) across the 1000 replications and the median time
per iteration.

[Table 1 about here.]

[Table 2 about here.]
22Computational times are reported using Matlab R2020b on a 2019 Mac Pro with a 3.5 GHz 8-Core Intel

Xeon W processor.
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For Experiment 1, both the k-NPL and k-EPL estimators perform equally well with low
bias, as can be seen in Tables 1 and 2. The parameter with the most finite-sample variation
is also the main parameter of interest in our study: θRN. Note that in this model, in order to
obtain estimates with performance similar to the converged estimates it would suffice to stop
at 3 iterations with either estimator. Typically, both ∞-NPL and ∞-EPL converge in 4 to 5
iterations. However, even in this specification where k-NPL performs well, in one case out of
1000, ∞-NPL fails to converge in 100 iterations or less while ∞-EPL always converges in at
most 7 iterations. In terms of computational time, in this model due to the computational
complexity, in the median experiment one iteration of k-EPL is more expensive (0.3 seconds)
than one iteration of k-NPL (0.045 seconds). Because roughly the same number of iterations
are required in this model, the overall times for ∞-EPL are also longer than for ∞-NPL.
However, even with the increased complexity each replication of ∞-EPL takes only around
1.3 seconds to estimate, so it remains quite feasible.

[Table 3 about here.]

[Table 4 about here.]

In Experiment 2, we begin to see a divergence between the two methods. As reported by
Aguirregabiria and Marcoux (2021), the spectral radius of the population NPL operator is
slightly larger than one for this specification. In finite random samples, sometimes the sample
counterpart is stable and sometimes it is unstable. This leads to the situation illustrated by
Table 3, where ∞-NPL fails to converge in 612 of 1000 replications. ∞-EPL, on the other
hand, is stable and converges for all 1000 replications. Importantly, the 1-NPL estimator
obtained without further iterations is always consistent. However, there is substantial bias
in the ∞-NPL estimates. In an apparent contradiction, the MSE for θRN is actually lower for
∞-NPL than for ∞-EPL. This pattern of larger bias and lower MSE is seen again with the
large sample size in Table 4, however it can be understood simply by recalling the histogram
of the θRN estimates (panel (b) of Figure 1). The ∞-NPL sampling distribution appears to
be truncated near 2.4, which perhaps not coincidentally is near the value where the spectral
radius exceeds one (Aguirregabiria and Marcoux (2021)). Since this happens to be close to
the true parameter value, the MSE is artificially low. However, the sampling distribution is
neither normally distributed nor centered at the true value. A K-S test for normality of the
∞-NPL estimates has a p-value equal to zero up to three decimal places, while for ∞-EPL
the p-value is 0.622.

In Experiment 2 we also see a reversal of the order of computational times: the non-
convergent ∞-NPL cases require more iterations and more time per iteration, while ∞-EPL
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always converges in 8 or fewer iterations. Thus, in thinking about the trade-off between
robustness and computational time we should also consider convergence. A non-convergent
estimator may take longer and yield worse results in the end. k-EPL does require more time
per iteration in this model, but it is more robust to the strength of competition in the model.

[Table 5 about here.]

[Table 6 about here.]

Turning to Experiment 3, we increase the effect of competition even further to where
θRN = 4, well beyond the point where k-NPL becomes unstable. In this case, both with
small samples and large samples, ∞-NPL fails to converge in all 1000 replications but ∞-
EPL converges in all 1000 replications. In these cases, the bias in ∞-NPL estimates is larger
and in this case and so is the MSE, since the value of θRN is farther from the point of
truncation than in Experiment 2. The ∞-NPL estimator systematically underestimates the
competitive effect θRN and overestimates the entry cost θEC.

Overall, across the three experiments the performance of k-EPL is stable and of similar
quality despite the increasing competitive effect. This result agrees with our theoretical
analysis showing that k-EPL is stable, convergent, and efficient.

Finally, we note that with the k-EPL estimator there is very little performance improve-
ment after the first three iterations. The performance of ∞-EPL is achieved already, up to
two decimal places, by 3-EPL. Thus, for this model one can reduce the computational time
required while retaining efficiency and robustness by carrying out only a few iterations of
k-EPL.

5 Application to U.S. Wholesale Club Competition

The U.S. wholesale club store industry is a retail segment that offers members a wide range of
merchandise at discounted prices. The industry is dominated by three major players: Sam’s
Club, Costco, and BJ’s Wholesale Club. These companies operate as membership-based
clubs, with a focus on bulk purchasing and high-volume sales.

The modern wholesale club store industry emerged in the 1970s with the founding of
Price Club in San Diego, California. Price Club was a pioneer in the industry, offering its
members deep discounts on products, including groceries, electronics, and household goods.
In 1983, Costco was founded in Seattle, Washington, and quickly became a major player in
the industry. Sam’s Club, a subsidiary of Walmart, was also founded in 1983. BJ’s Wholesale
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Club was founded in 1984 in Massachusetts. In 1993, Price Club merged with Costco and
adopted the Costco name (Costco Wholesale Corporation (2023)).

Today, the wholesale club store industry is a major force in retail, with the three main
players generating over $260 billion in annual revenue, according to data from their 2021
annual reports. Costco is the largest company in the industry, with over 800 stores worldwide
and annual revenue of over $190 billion (Costco Wholesale Corporation (2021)). Sam’s Club
is the second-largest, with around 600 stores and annual revenue of over $60 billion (Walmart
Inc. (2021)). BJ’s Wholesale Club is the smallest of the three, with over 200 stores and annual
revenue of over $16 billion (BJ’s Wholesale Club Holdings, Inc. (2022)).

Although we focus on Costco, Sam’s Club, and BJ’s, which are by far the largest firms in
the industry, there are other smaller players. An example is DirectBuy, which was the 4th
largest firm (by total markets served) in our sample. While it was a significant player in the
home furnishings and home improvement space, it was not a direct competitor of Costco,
Sam’s Club, and BJ’s and was significantly smaller. DirectBuy faced financial difficulties
and filed for bankruptcy in 2018 (Engel (2016)).

5.1 Data

Our data come from the Data Axle Business Database which contains information on busi-
nesses across the United States. The company uses a variety of sources to gather information
on businesses, including public records, government filings, and proprietary data sources.
Our data begins in 2009 and ends in 2021. From this database we first extract records for
each Sam’s Club, Costco, and BJ’s location. We augment this with ZIP code level population
data obtained from NHGIS (Manson, Schroeder, Van Riper, Kugler, and Ruggles (2022)).
We then aggregate to county-level markets using the 2021 ZIP code to county crosswalk files
provided by the U.S. Department of Housing and Urban Development (HUD). We consider
all counties in the 50 states of the United States and the District of Columbia that have
between 20,000 and 600,000 residents. This serves to exclude very small counties that would
clearly not be considered for entry as well as some very large, atypical markets.

Overall, our final sample consists of N = 1, 600 counties observed over T = 12 years.23

Among these markets, the average peak population during our sample was 104,841 with
standard deviation 112,759.24 In the model, our market size variable, sit, is the logarithm
of population discretized into 5 equal bins.25 Table 7 presents summary statistics for our

23Although we have 13 years of data, we require lagged actions to construct the incumbency status state
variable. As a result, the time dimension of our sample is reduced to T = 12.

24We compute peak population for a market as the maximum over the years in the sample.
25We also tried 10 bins without any major substantive changes in the results.
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sample. On average, there are 0.348 active firms in each market with a standard deviation
of 0.622. The autoregressive coefficient for the number of active firms is 0.987, indicating
a strong positive correlation between the number of active firms in the current period and
the previous period.26 The average number of entrants is 0.010, while the average number
of exits is 0.006. Excess turnover, defined as (#entrants + #exits) - |#entrants - #exits|, is
effectively zero. The correlation between entries and exits is -0.007. The probability of being
active is highest for Sam’s Club at 0.201, followed by Costco at 0.093 and BJ’s at 0.054.
The distribution of market size is such that there are relatively more small-to-medium size
markets markets and relatively fewer large markets.

[Table 7 about here.]

5.2 Model

Our model of wholesale club competition follows the dynamic oligopoly model with heteroge-
neous firms described in Example 1 and also used in our Monte Carlo experiments in Section
4. In our application the firms are denoted J = {SC,CC,BJ}. In each market i = 1, . . . , N

and time period t = 1, . . . , T , firms decide whether to operate in a market (ajit = 1) or not
(ajit = 0). The profit function has the following form for an active firm j:

ūj(xit, a
j
it = 1, a−j

it ; θ) = θFC,j + θRSsit − θRN ln

(
1 +

∑
l ̸=j

alit

)
− θEC(1− aji,t−1).

Here, θFC,j is the fixed cost of operation for firm j, θEC is the cost incurred by a new entrant,
θRS represents the effect of market size sit (the discretized logarithm of population, defined
above), and θRN captures the effect of competition. When firm j is inactive, ūj(xit, a

j
it =

0, a−j
it ; θ) = 0.

5.3 Structural Parameter Estimates

Using k-EPL, we estimate the heterogeneous fixed costs θFC,SC, θFC,CC, and θFC,BJ as well
as the entry cost θEC, the coefficient on market size θRS, and the competitive effect θEC

parameters of the model.
Table 8 reports the point estimates from the observed sample along with standard errors

and 95% confidence intervals estimated using 250 cross-sectional bootstrap replications. The
estimates all have the expected sign and are all significantly different from zero at the 5%

26This refers to the estimated autoregressive coefficient in an AR(1) regression of the number of current
active firms on the number of active firms in previous period.
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level. Fixed costs are lowest for Sam’s Club and highest for BJ’s. Firms are more profitable
in larger markets and entry by competitors reduces profits. The entry cost is large relative
to fixed costs, as expected.

[Table 8 about here.]

We note that for this application k-NPL yields very similar results to k-EPL. The es-
timated competitive effect is small, implying that k-NPL is likely to be stable. However,
we could not know this a priori (recall that in our Monte Carlo Experiments, the k-NPL
estimates of the competitive effect are biased towards zero). However, ex post, with the
stable k-EPL estimates in hand, we can understand the performance of k-NPL this setting.

5.4 Counterfactual

The industry under investigation is characterized by a significant number of monopoly mar-
kets. In the latest year of our sample, 2021, we observed a mere 14 triopoly markets (less
than 1% of our sample). Only 7% of the markets had a duopoly, with two firms present,
while 20% of the markets were monopolies, where a single firm operated. Interestingly, 72%
of counties in our sample had no wholesale club stores at all in 2021. Our counterfactual
exercise aims to explore the reasons behind this relative scarcity of duopoly and triopoly
markets. Are strong competitive effects or high costs responsible?

To address this question, we conduct a counterfactual simulation in which we entirely
eliminate the competitive effect in the model, allowing firms to operate as independent agents
without considering their competitors’ actions. If we observe a substantial increase in new
entries, we may deduce that strong competition is deterring other firms from entering the
market. Conversely, if we notice minimal change in entry behavior, it may suggest that
competitive effects are insignificant, and costs are the primary factor driving firms’ entry
decisions.

To investigate this, we take the estimated structural parameters from the observed sam-
ple, set θRN = 0, and compute the counterfactual equilibrium. We solve the nonlinear system
of equilibrium equations using the estimated equilibrium as the starting value. Subsequently,
we compare the results of simulations conducted under this counterfactual scenario to those
obtained using the estimated model parameters. We perform this procedure for each boot-
strap replication to calculate standard errors for the counterfactual quantities of interest.
For every simulation, we employ the observed market configuration at the beginning of the
sample in 2009 and simulate until the end of our sample period in 2021.

In Table 9, we present aggregate statistics from simulations using both the estimated and
counterfactual parameters, where the competitive effect has been set to zero. The reported
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figures represent the estimated means and standard errors derived from simulated sample
paths using the parameters from the 250 bootstrap replications. Before delving into the
counterfactual analysis, it is worth noting that this can also serve as a test of the model’s
fit. We observe that the average number of active firms, entries, and exits, as well as the
distribution of the number of firms present, align reasonably well with the observed values
from the data. Upon examining the counterfactual, we discover that removing the effect
of competition does not significantly reduce the number of unserved markets (from 1164 to
1156). However, it does shift the distribution away from monopoly markets (from 341 down
to 300) towards a higher prevalence of duopoly and triopoly markets (from 93 up to 118, and
from 11 up to 34, respectively). These findings indicate that competition in this industry is
relatively weak, and costs play a more significant role in determining entry behavior.

[Table 9 about here.]

Table 10 provides a more detailed breakdown of our simulations by firm and market size
state s. We estimate that, on average, Sam’s Club would enter approximately 3 additional
small markets (s = 1, 2, 3) and around 15 additional large markets (s = 4, 5). Costco would
enter, on average, 4 additional small markets and 28 large markets. BJ’s would enter, on
average, 3 additional small markets and 27 large markets. Consequently, eliminating the
competitive effect appears to have a proportionally much larger impact on BJ’s compared to
Costco and Sam’s Club. This effect is also considerably more pronounced in larger markets
than in smaller ones.

[Table 10 about here.]

Our analysis also incorporates average profit simulations using both the estimated param-
eters and the counterfactual parameters. To achieve this, for each simulation, we calculate
vj(x, aj)+ e(x, aj;P j) for each firm and average it over each simulated sample path of states
and choices.27 We perform this separately for the simulations based on the model estimates
and those under the counterfactual parameters. Comparing these two unit-less measures of
profitability offers another perspective on our research question.

The results of this exercise are reported in Table 11. The resulting changes in average
profits are relatively minor: a 2.0% increase for Sam’s Club, a 2.5% increase for Costco,
and a 1.9% increase for BJ’s. These results provide further insights regarding the relative
significance of competition and costs in determining market entry behavior. The modest

27We simulate actions by sampling from the distribution defined by P j , so e(x, aj ;P j) ≡ E[εj(aj) |
x, aj , P j ] must be included to capture the contribution of εj to average profit. With Type 1 Extreme Value
shocks, e(x, aj ;P j) = − lnP j(x, aj) + γ̄, where γ̄ is the Euler-Mascheroni constant.
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changes in average profits under the counterfactual scenario, where competitive effects are
removed, suggest that competition does not play a dominant role in shaping firms’ entry
decisions. Instead, this reinforces our earlier findings that costs are a more substantial
determinant of entry behavior in this industry.

[Table 11 about here.]

6 Conclusion

We proposed an iterative k-step Efficient Pseudo-Likelihood (k-EPL) estimation sequence
that extends the attractive econometric and computational properties of the single-agent k-
NPL sequence to games. The nice econometric properties arise because k-EPL uses Newton-
like steps on the fixed point constraint at each iteration. As a result, k-EPL is stable for
all regular Markov perfect equilibria, each EPL iteration has the same limiting distribution
as the MLE, and further iterations achieve higher-order equivalence and quickly converge
to the finite-sample MLE almost surely. Computational advantages follow from defining
the equilibrium conditions with choice-specific value functions, with standard modeling as-
sumptions reducing each EPL iteration to two steps: (i) solving linear systems to generate
pseudo-regressors, followed by (ii) solving a globally concave static logit/probit maximum
likelihood problem using the pseudo-regressors.

In a real-world application, we use k-EPL to investigate the effect of competition on
entry and exit of U.S. wholesale club stores. Our estimated model indicates that competition
among wholesale club stores has a relatively mild effect on their entry and exit.Our Monte
Carlo simulations show that k-EPL performs favorably in finite samples, is robust to data-
generating processes where standard k-NPL encounters serious problems, and scales better
than other iterative alternatives to k-NPL.

One limitation of our analysis is that we did not consider time-invariant unobserved het-
erogeneity in estimating dynamic discrete games. k-EPL can easily accommodate a proxy
variable approach (e.g., Collard-Wexler (2013)), where an observed time-invariant variable
is used to proxy for the the time-invariant unobserved heterogeneity. Without a proxy vari-
able, it may also be possible to modify the k-EPL algorithm to incorporate time-invariant
unobserved heterogeneity while preserving computational convenience and econometric ef-
ficiency. However, we leave such a substantial and challenging extension as an avenue for
future research.
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A Proofs

Proofs are presented in order of appearance in the main text.

A.1 Proof of Lemma 1

We show that v = Φ(θ, v) is a Bellman-like representation of the best-response equilibrium
conditions, P = σ(θ, P ). First, note that P j = Λj(vj) for all j. Using the definition of Φ(·)
from Section 2 and stacking all states for player j, we have

Φj(aj; vj, v−j, θ) = uj(aj; Λ−j(v−j), θu) + βF j(aj; Λ−j(v−j); θf )S(v
j).

We see that v−j only influences Φj(·) through its effect on P−j = Λ−j(v−j) and we can then
define ϕj(aj; θ, vj, P−j) = Φj(aj; θ, vj, v−j). It is straightforward to show that ||∇vjϕ

j||∞ =

β < 1. To see this, note that

∂ϕj(x, aj; θ, vj, P−j)

∂vj(x′, a′)
= βf j(x′ | x, aj, P−j)P j(x′, a′).

= β × Pr(x′, a′
j | x, aj, P−j),

where a′j denotes the future action of player j. So, we have ∇vjϕ
j(vj) = βEj(P−j),

where Ej(P−j) is a row-stochastic matrix with entries that represent transition proba-
bilities between state-action pairs: Ej(P−j){k, l} = Pr((x′, a′j) = l | (x, aj) = k, P−j).
Since Ej is row-stochastic, we have ||Ej(P−j)||∞ = 1, and it follows that ||∇vjϕ

j(vj)||∞ =

||βEj(P−j)||∞ = β||Ej(P−j)||∞ = β. Consequently, ϕj(·) is a Bellman-like contraction in vj

(fixing θ and P−j) with a unique fixed point. Player j’s best response is σj(θ, P−j) = Λj(vj)

where vj = ϕj(θ, vj, P−j). Imposing v = Φ(θ, v) is therefore equivalent to imposing P =

σ(θ, P ); their sets of fixed points for a given θ are isomorphic.

A.2 Proof of Lemma 2

Let γ =
(
θ̆, Y

)
(to explicitly distinguish θ from θ̆), so that

Υ(θ, γ) = Υ
(
θ,
(
θ̆, Y

))
= Y −

(
∇YG

(
θ̆, Y

))−1

G(θ, Y ).
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Additionally, let γθ = (θ, Yθ). Then we have

Υ(θ, γθ) = Yθ − (∇YG(θ, Yθ))
−1G(θ, Yθ).

Result 1 follows immediately because (∇YG(θ, Yθ))
−1 is non-singular and Yθ = Y (θ) by

definition, so Υ(θ, γθ) = Yθ if and only if G(θ, Yθ) = 0.
For Results 2 and 3, first consider partial derivatives of Υ(θ, γ), evaluated at (θ, γθ):

∇θΥ(θ, γ)

∣∣∣∣
(θ,γ)=(θ,(θ,Yθ))

= −
(
∇YG

(
θ̆, Y

))−1

∇θG(θ, Y )

∣∣∣∣
(θ,γ)=(θ,(θ,Yθ))

= − (∇YG (θ, Yθ))
−1∇θG(θ, Yθ).

Implicit differentiation on G(θ, Yθ) = 0 yields

Y ′(θ) = −(∇YG(θ, Yθ))
−1∇θG(θ, Yθ),

proving Result 2. For Result 3, first note that we have

∇γΥ(θ, γ) =

[
−∂∇γG(γ)−1

∂θ
G(θ, Y )

I −∇YG(θ̆, Y )−1∇YG(θ, Y )− ∂∇γG(γ)−1

∂γ
G(θ, Y )

]′

. (1)

This then leads to

∇γΥ(θ, γ)

∣∣∣∣
(θ,γ)=(θ,(θ,Yθ))

=

[
−∂∇γG(γ)−1

∂θ
G(θ, Y )

I −∇YG(θ̆, Y )−1∇YG(θ, Y )− ∂∇γG(γ)−1

∂γ
G(θ, Y )

]′ ∣∣∣∣
(θ,γ)=(θ,(θ,Yθ))

=

[
−∂∇γG(γθ)

−1

∂θ
G(θ, Yθ)

I −∇YG(θ, Yθ)
−1∇YG(θ, Yθ)− ∂∇γG(γθ)

−1

∂γ
G(θ, Yθ)

]′

=

[
−∂∇γG(γθ)

−1

∂θ
× 0

I − I − ∂∇γG(γθ)
−1

∂γ
× 0

]′

= 0.

where the second-to-last equality arises because G(θ, Yθ) = 0.
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A.3 Proof of Theorem 1

The proofs of Results 1 and 2 adapt the proofs of consistency and asymptotic normality for
the 1-NPL estimator from Aguirregabiria and Mira (2007) to an inductive proof for k-EPL.28

We do this by showing that strong
√
N -consistency of γ̂k−1 = (θ̂k−1, Ŷk−1) implies the results

for γ̂k = (θ̂k, Ŷk). The proof of Result 3 follows the arguments very similar to those used
in the proofs of Proposition 2 of Kasahara and Shimotsu (2008) and Proposition 7 in the
supplementary material for Kasahara and Shimotsu (2012). Throughout, we rely heavily on
analysis similar to that from the proof of Lemma 2.

It is helpful up-front to define q̃i(θ, γ) = qi(θ,Υ(θ, γ)), Q̃N(θ, γ) = N−1
∑N

i=1 q̃i(θ, γ), and
θ̃N(γ) = arg maxθ Q̃N(θ, γ). Similarly, Q̃∗(θ, γ) = E[q̃i(θ, γ)] and θ̃∗(γ) = arg maxθ Q̃

∗(θ, γ).
Then, θ̂k = θ̃N(γ̂k−1) and Ŷk = Υ(θ̂k, γ̂k−1).

A.3.1 Result 1 (Strong consistency of θ̂k and Ŷk)

We have uniform continuity of Q̃∗(θ, γ) and that Q̃N(θ, γ) converges almost surely and uni-
formly in (θ, γ) ∈ Θ × (Θ × Y) to Q̃∗(θ, γ). Also, γ̂k−1 converges almost surely to γ∗.
Appealing to Lemma 24.1 of Gourieroux and Monfort (1995), these imply that Q̃N(θ, γ̂k−1)

converges almost surely and uniformly in θ ∈ Θ to Q̃∗(θ, γ∗). Then since θ∗ uniquely max-
imizes Q̃∗(θ, γ∗) on Θ, θ̂k converges almost surely to θ∗ (Gourieroux and Monfort, 1995,
Property 24.2). Continuity of Υ(θ, γ) and the Mann-Wald theorem then give almost sure
convergence of Ŷk to Y ∗.

A.3.2 Result 2 (Asymptotic Distribution of θ̂k and Ŷk)

We will show that consistency of γ̂k−1 leads to asymptotic normality of θ̂k and Ŷk, with their
asymptotic variance the same as the MLE. Using the properties of Υ(·) defined in Algorithm
1, the chain rule, and the generalized information matrix equality (Newey and McFadden,
1994, p. 2163) we obtain the following population equalities:

∇θθ′Q̃
∗(θ∗, γ∗) =− Ω∗

θθ,

∇θγ′Q̃∗(θ∗, γ∗) =0.

To establish these, first recall that Q̃∗(θ, γ) = E[ln f(w | θ,Υ(θ, γ))] and let γ = (θ̆, Y )

denote the components of γ (to explicitly distinguish θ from θ̆). Then by the generalized
28See the proofs of Propositions 1 and 2 in the Appendix of Aguirregabiria and Mira (2007).
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information matrix equality we have

∇θθ′Q̃
∗(θ∗, γ∗) = E[∇θθ′ ln f(w | θ∗,Υ(θ∗, γ∗))]

= −E[∇θ ln f(w | θ∗,Υ(θ∗, γ∗))∇θ ln f(w | θ∗,Υ(θ∗, γ∗))′]

= −Ω∗
θθ,

where the final equality is a direct implication of Lemma 2 (Result 2) because γ∗ = γθ∗ . We
also have

∇θγ′Q̃∗(θ∗, γ∗) = E[∇θγ′ ln f(w | θ∗,Υ(θ∗, γ∗))]

= −E[∇θ ln f(w | θ∗,Υ(θ∗, γ∗))∇γ ln f(w | θ∗,Υ(θ∗, γ∗))′]

= 0.

The last equality follows from the chain rule and Lemma 2:

∇γ ln f(w | θ∗,Υ(θ∗, γ∗)) =
1

f(w | θ∗,Υ(θ∗, γ∗))
∇Y f(w | θ∗,Υ(θ∗, γ∗))∇γΥ(θ∗, γ∗)

= 0

where the second equality arises because ∇γΥ(θ∗, γ∗) = 0 by Lemma 2 (Result 3).
Turning to the sample objective function, a Taylor expansion of the first-order condition

gives

0 = ∇θQ̃N(θ
∗, γ∗) +∇θθ′Q̃N(θ̄, γ̄)(θ̂k − θ∗) +∇θγ′Q̃N(θ̄, γ̄)(γ̂k−1 − γ∗).

Solving and scaling then yields

√
N(θ̂k − θ∗) = −∇θθ′Q̃N(θ̄, γ̄)

−1
[√

N∇θQ̃N(θ
∗, γ∗) +∇θγ′Q̃N(θ̄, γ̄)

√
N(γ̂k−1 − γ∗)

]
.

By consistency of γ̂k−1 and θ̂k and the Mann-Wald theorem we have ∇θθ′Q̃N(θ̄, γ̄)
a.s.→ −Ω∗

θθ

and by the central limit theorem,
√
N∇θQ̃N(θ

∗, γ∗)
d→ N(0,Ω∗

θθ). For the last term in square
brackets we have

√
N(γ̂k−1 − γ∗) = Op(1) and ∇θγ′Q̃N(θ̄, γ̄) = op(1). Therefore,

√
N(θ̂k − θ∗)

d→ N(0,Ω∗−1
θθ ).

Furthermore, because Ŷk = Υ(θ̂k, γ̂k−1), with Υ twice continuously differentiable in a neigh-
borhood of (θ∗, Y ∗), consistency and asymptotic normality of Ŷk follow immediately. Asymp-
totic equivalence of Ŷk and ŶMLE follow from asymptotic equivalence of θ̂k and θ̂MLE and the
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properties of Υ. Strong
√
N -consistency of γ̂0 completes the proof by induction.

A.3.3 Result 3 (Large Sample Convergence)

This result follows from Kasahara and Shimotsu (2012, Proposition 1). The zero Jacobian
property ensures that the required spectral radius is equal to zero: as established in Result
2 above ∇θγQ̃

∗(θ∗, γ∗) = 0, so the spectral radius is also zero.

A.4 Proof of Theorem 2

By examining the first-order conditions, we can see that θ̂MLE = θ̃N(γ̂MLE), so that ŶMLE =

Υ(θ̃N(γ̂MLE), γ̂MLE). This proves Result 1: the MLE is a fixed point of the EPL iterations.
Now let HN denote the EPL iteration mapping by stacking the updating equations for θ

and Y so that γ̂k = HN(γ̂k−1):

HN(γ) =

[
H1,N(γ)

H2,N(γ)

]
≡

[
θ̃N(γ)

Υ(θ̃N(γ), γ)

]
.

We then consider the first-order conditions evaluated at γ̂MLE. First we have

∇γH1,N(γ̂MLE) = ∇γ θ̃N(γ̂MLE)
a.s.→ ∇γ θ̃

∗(γ∗) = 0 (2)

because ∇θγ′Q̃∗(θ∗, γ∗) = 0, as shown in the proof of Theorem 1 (Result 2). Second, we have

∇γH2,N(γ̂MLE) = ∇θΥ(θ̂MLE, γ̂MLE)∇γ θ̃N(γ̂MLE) +∇γΥ(θ̂MLE, γ̂MLE).

recalling that θ̃N(γ̂MLE) = θ̂MLE. The first term converges to zero in probability as in (2).
The second term is zero due to Lemma 2 (Result 3).

The above analysis implies that γ̂MLE = HN(γ̂MLE) and ∇γHN(γ̂MLE)
a.s.→ 0, which are

key to Results 2 and 3. To obtain Result 2, note that the
√
N -consistency of γ̂MLE implies

∇γHN(γ̂MLE) = 0+Op(N
−1/2), due to continuity of ∇γHN(·). So, by a first-order expansion

around γ̂MLE,

γ̂k = HN(γ̂k−1)

= HN(γ̂MLE) +∇γHN(γ̂MLE)(γ̂k−1 − γ̂MLE) +Op(||γ̂k−1 − γ̂MLE||2)

= γ̂MLE + (0 +Op(N
−1/2))(γ̂k−1 − γ̂MLE) +Op(||γ̂k−1 − γ̂MLE||2).
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It follows that

γ̂k − γ̂MLE = Op(N
−1/2||γ̂k−1 − γ̂MLE||+ ||γ̂k−1 − γ̂MLE||2).

For Result 3, we appeal to continuity of ∇γHN(·) and ||·||. For any ε > 0, if ||∇γHN(γ̂MLE)|| <
ε, then there exists some neighborhood around γ̂MLE, B, such that HN(·) is a contraction
mapping on B with Lipschitz constant, L < ε, and fixed point γ̂MLE (as established in Result
1). We have ∇γHN(γ̂MLE)

a.s.→ 0, so that ||∇γHN(γ̂MLE)|| < ε w.p.a. 1 as N → ∞. Result 3
follows immediately.

B Additional Monte Carlo Results

B.1 Pesendorfer and Schmidt-Dengler (2008): Dynamic Game with

Multiple Equilibria

Here, we conduct simulations where we estimate the model from Pesendorfer and Schmidt-
Dengler (2008), a small-scale dynamic game with multiple possible equilibria. There are two
firms indexed by j ∈ {1, 2} who choose an action in each market i, denoted aji ∈ {0, 1}, where
1 is entry and 0 is exit. The observed state variable xi = (x1

i , x
2
i ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

represents the incumbency status of firms 1 and 2, respectively. Flow utilities are period
profits:

ũj(xi, a
j
i = 1) = θM + θCa

−j
i + θEC(1− xj

i ) + εj1,

ũj(xi, a
j
i = 0) = θSVx

j
i + εj0,

where θEC represents the entry cost, θSV is the scrap value, θM is the monopoly profit, and
θC is the effect of competition on profit. The discount factor is β∗ ∈ (0, 1). The data
are generated using the parameter values (θM, θC, θEC, θSV, β) = (1.2,−2.4,−0.2, 0.1, 0.9).
The private shocks have distribution εja ∼ N(0, 0.5). We note that this is a slightly different
parameterization of the model than the one used by Pesendorfer and Schmidt-Dengler (2008),
but it is straightforward to show that the resulting flow utility values are the same and hence
the equilibria are also the same.

There are multiple equilibria in the game, and we generate data from equilibria (i), (ii),
and (iii) from Pesendorfer and Schmidt-Dengler (2008). The NPL mapping is unstable for
two of the three equilibria, but the EPL mapping, due to its Newton-like form, is stable for
all three equilibria. Specifically, equilibrium (i) is asymmetric and NPL-stable, equilibrium
(ii) is asymmetric and NPL-unstable, and equilibrium (iii) is symmetric and NPL-unstable.
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In their Monte Carlo simulations, Pesendorfer and Schmidt-Dengler (2008) find that k-NPL
performs well for equilibrium (i) but becomes severely biased for equilibria (ii) and (iii) as k
grows, which is in line with the theoretical analysis of Kasahara and Shimotsu (2012).29 In
contrast, we expect that k-EPL will perform well for all three equilibria.

We estimate (θM, θC, θEC) and assume the other parameter values are known and held
fixed at θSV = 0.1 and β = 0.9. We present results for estimation using k-NPL and k-
EPL. The initial estimates of the conditional choice probabilities are sample frequencies,
P̂ j(x, aj). We generate the data by first taking N ∈ {250, 1000} i.i.d. draws from the
stationary distribution of the observed state, x, for each equilibrium. One interpretation
of this sampling procedure is that each of the draws from the stationary distribution of x
represents an independent market. For each of these N draws we then sample actions for each
player using the equilibrium choice probabilities. We carry out 1000 replications for each
sample size. For ∞-NPL and ∞-EPL we terminate the algorithm when |θ̂k− θ̂k−1| < 10−6 or
after 100 iterations. Computational times reported are minutes of “wall clock” time required
to carry out the full set of replications.30

In order to implement k-EPL in this context, we use the fixed-point constraint in choice-
specific value function space, defined in Section 2. Computing ∇vG(θ̂k−1, v̂k−1) for k = 1

requires initial estimates (θ̂0, v̂0). We use θ̂0 = θ̂1-NPL, the estimate from 1-NPL, which is
similar to the way Pesendorfer and Schmidt-Dengler (2008) use θ̂1-NPL to obtain an estimate
of the efficient weighting matrix used in their minimum-distance estimator. For each player,
we then set v̂j0(x, a

j) = uj(x, aj; θ̂0, P̂
−j) + βf j(x, aj; P̂−j)′Γj(θ̂0, P̂ ), where

Γj(θ, P ) =
(
I − βF j(θ, P )

)−1
∑
aj

P j(aj) ∗
(
uj(aj; θ, P−j) + e(aj;P j)

)
maps (θ, P ) into an ex-ante value function for player j, as in Aguirregabiria and Mira (2007,
p. 10).

B.1.1 Results for NPL-Stable Equilibrium (i)

Table 12 shows results for equilibrium (i), for which k-NPL is stable and consistent. We
consider both the one-step k-NPL and k-EPL estimators (for k = 1) as well as the converged
estimators (k = ∞). For k = ∞, we report the total estimation time across all datasets, as
well as the median and interquartile range (IQR) of the number of iterations. For the large

29Pesendorfer and Schmidt-Dengler (2008) use the terminology “k-PML” for k-NPL and iterate until
k = 20.

30Experiments were carried out using MATLAB R2018a on a 2017 iMac Pro in parallel using 18 Intel
Xeon 2.3 GHz cores.
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sample experiments, we obtained convergence in fewer than 100 iterations for all algorithms
in almost all datasets, with ∞-NPL and ∞-EPL failing to converge in only 5 and 1 out of
1000 datasets, respectively. Convergence rates were somewhat lower, especially for ∞-NPL,
with the smaller sample size. Our reported results include all datasets, including those where
we obtain non-convergence.

[Table 12 about here.]

Comparing 1-NPL to 1-EPL in Table 12, we see that 1-EPL has lower mean bias and MSE
for all three parameters of interest. However, both of these are outperformed by estimators
iterated to convergence, illustrating the gains from such iterations in finite samples. For the
larger sample size ∞-EPL has the lowest bias, MSE, number of iterations, and computation
time. Even for this equilibrium where k-NPL is expected to perform well, the efficiency of
k-EPL yields improvements. Time per iteration is similar for k-NPL and k-EPL here, so the
lower computational times are driven by the significant reduction in the number of iterations
to convergence.31 In this case for the smaller sample size, the results are more mixed. The
mean bias of k-EPL is higher (in absolute value) for two parameter values, but the MSE is
lower for all three. However, as before, convergence is much faster.

B.1.2 Results for NPL-Unstable Equilibria (ii) and (iii)

[Table 13 about here.]

Turning to equilibrium (ii), for which the NPL fixed point is unstable, we have a very
different picture. The results are presented in Table 13. For ∞-NPL there is substantial bias
in all parameters and seemingly little variation around those biased values. For example,
there is attenuation bias in the competitive effect θC, making it seem less negative. This bias
does not appear to decrease with the sample size. The bias for ∞-EPL is lower by an order of
magnitude in all cases for N = 250 and by two orders of magnitude for N = 1000. Relative
to 1-NPL and 1-EPL, iterating in the finite sample improves the estimates for ∞-EPL but
worsens the estimates for ∞-NPL.

Table 14 reports some results for equilibrium (iii), which is also NPL-unstable, and
therefore the results are qualitatively similar to those for equilibrium (ii) presented in Table
13.

[Table 14 about here.]
31Each iteration reduces to solving a linear system and then estimating a static binary probit model.
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Overall, the results here illustrate the good performance of k-EPL and in particular ∞-
EPL. We see that ∞-EPL is generally more efficient, is robust to unstable equilibria, and
converges in fewer iterations than ∞-NPL, resulting in substantial time savings.

B.1.3 Effects of Noisy, Inconsistent Starting Values

Next, we consider robustness to starting values. Like convergence results for Newton’s
method, our convergence results are local. That is, the starting values (initial estimates)
must be in a neighborhood of the maximum likelihood estimates to guarantee convergence.
We do not claim, nor should we expect, global convergence results in models with multiple
equilibria. This underscores the importance of good initial estimates, i.e., either consistent
estimates or multiple starting values, or both. First we explore using a single, polluted ver-
sion of the consistent estimates as the starting value. This is for the purposes of exploring
the effect of noise in consistent starting values with respect to the locality of convergence.
In practice, of course, we recommend using multiple starting values.

[Table 15 about here.]

In Table 15 we used initial choice probabilities that were an equally weighted average
of the consistent CCP estimates and Uniform(0, 1) noise. We then re-computed each of the
converged estimates — ∞-NPL and ∞-EPL — using these noisy starting values with the
small sample size N = 250. For equilibrium (i), comparing with the consistent starting
values from the top panel of Table 12, we see that the added noise increases the MSE values
and decreases convergence rates for both estimators, but the increase in bias is smallest for
∞-EPL. Furthermore, the convergence rate of ∞-EPL decreases less than the convergence
rate for ∞-NPL.

For equilibrium (ii) we can compare with the consistent starting values from the top
panel of Table 13. In this case the bias and MSE for ∞-NPL only changed slightly because
the estimates were previously also biased. There is only a slight increase in bias and MSE
as a result of the noisy starting values, but the results are largely the same as before. The
convergence percentage for ∞-NPL actually increased with the added noise, but the itera-
tions still converge to inconsistent estimates. On the other hand, the bias and MSE values
for ∞-EPL increased—especially for θC—while the convergence percentage only decreased
from 100% to 99.9%.

Overall, while good starting values are important, these results show that k-EPL is also
somewhat robust starting values with fairly severe estimation errors. Note that we do not
actually recommend using only a single starting value if first-stage CCP estimation accuracy
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is a concern. With that in mind, in the next section we consider moving away from consistent
starting values entirely.

B.1.4 k-EPL as a Computational Procedure (Random Starting Values)

Rather than rely solely on a single consistent estimate, we consider here using k-EPL as a
computational procedure to compute the MLE using multiple starting values (in practice,
ideally with a consistent estimate among them). A similar procedure was suggested by
Aguirregabiria and Mira (2007) to compute the NPL estimator by attempting to use the k-
NPL algorithm, with multiple starting values, to compute all NPL fixed points, and taking
the estimate that maximizes the likelihood. However, for datasets generated by equilibria
for which the NPL mapping is unstable, the initial guess may need to be exactly correct to
reach those fixed points.32 k-EPL, however, is stable and has a faster rate of convergence,
with the maximum likelihood estimator as a fixed point. So, in this section we consider using
this approach with k-EPL to compute the MLE.

[Table 16 about here.]

Using the same model as before and focusing on equilibria (i) and (ii), we proceed in the
following way for each of 1000 replications. First, we generated five completely random start-
ing values for the choice probabilities P . For each, we compute and store the corresponding
1-NPL estimate for θ. Then we compute the ∞-NPL and ∞-EPL estimates for each starting
value.33 Finally, for both ∞-NPL and ∞-EPL we select from among the five estimates the
one that maximizes the likelihood function. The results in Table 16 are calculated using
the best estimates for each of the 1000 replications. Reported iteration counts, convergence
percentages, and computational times include all 5 starting values over all replications.

Overall, the comparisons between k-EPL and k-NPL are qualitatively similar to the case
before with initial consistent estimates. For the NPL-stable equilibrium (i), the small sample
results for bias are mixed, but k-EPL is faster, converges more often, and has smaller MSE. In
the large sample, k-EPL always has lower bias and MSE in addition to being more stable and
computationally lighter. Also as before, k-EPL is robust to the NPL-unstable equilibrium.
These results show that ∞-EPL can be used as a computational procedure to compute the
MLE without initial consistent estimates, by using multiple starting values and choosing the
best estimates. This is true even for equilibrium data generating processes where using the
same procedure with ∞-NPL would yield inconsistent estimates.

32Aguirregabiria and Marcoux (2021) show that this issue can even arise when the data are generated
from a stable equilibrium.

33As in the previous simulations, we allow for up to 100 iterations per starting value but terminate early
if convergence is achieved.
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B.2 Pesendorfer and Schmidt-Dengler (2010): Static Game, Un-

stable Equilibrium

As a simple illustration of the performance of k-EPL, we consider estimating the static
game (β = 0) of incomplete information from Pesendorfer and Schmidt-Dengler (2010).
This example is particularly interesting because it was constructed as an example where
inconsistency of ∞-NPL can be shown analytically. We discuss only some relevant details
of the model and refer the reader to Pesendorfer and Schmidt-Dengler (2010) for a full
description.

There are two agents (players), j ∈ {1, 2}, and two possible actions, a ∈ {0, 1}. The
structural parameter is a scalar: θ ∈ [−10,−1]. The choice probabilities are Pr(aj = 1 |
θ, P−j) = 1 − Fα(−θP−j), where 0 < α < 1. Fα is an approximate uniform distribution
with Fα(v) = v for v ∈ [α, 1 − α) and a more complicated form for v ∈ R \ [α, 1 − α) to
guarantee that it is a proper distribution function with full support. The probability mass
in the uniform region can be made arbitrarily close to 1 by taking α → 0. Given a value of
θ, the model has three equilibria for α sufficiently close to zero. The equilibrium generating
the data is described by the following fixed point equation in P space:[

P 1

P 2

]
=

[
1 + θP 2

1 + θP 1

]

=

[
1

1

]
+

[
0 θ

θ 0

][
P 1

P 2

]
,

or more compactly, P = Ψ(θ, P ), so this can be used in k-NPL. This linear system has a
unique solution if and only if θ ̸= −1, and the solution is P 1 = P 2 = 1

1−θ
. Pesendorfer and

Schmidt-Dengler (2010) consider θ∗ = −2, so that P ∗
1 = P ∗

2 = 1
3
. They show that as N → ∞,

θ̂∞−NPL
p→ −1. Rather than repeat their full explanation of this result, we instead focus

on explaining why the sequence does not converge to θ∗ = −2. The reason is, essentially,
because the equilibrium is unstable. Notice that

∇PΨ(θ∗, P ∗) =

[
0 −2

−2 0

]
,

which has eigenvalues λ = ±2, implying that the equilibrium is unstable. Kasahara and
Shimotsu (2012) show that the non-convergence issue in k-NPL can be rectified by estimating
separate parameters for each player. However, this type of adjustment may not induce
convergence in more general settings.
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Consider, instead, estimating θ∗ with k-EPL, with a change of variable to v space. Noting
that P−j = Fα(v

−j), in the equilibrium we have vj = θFα(v
−j) where Fα(v

−j) = v−j in the
region of interest. The fixed-point equation then reduces to:[

v1

v2

]
=

[
(1 + v2)θ

(1 + v1)θ

]
.

So, we can define Y ≡ v = (v1, v2) and therefore

G(θ, v) = v −

([
0 1

1 0

]
v +

[
1

1

])
θ

= v − (Av + b) θ

Because θ is a scalar, G(θ, v) is linear in θ and v separately (holding the other fixed) but
not jointly. Linearity in v is important because G(θ, v) = 0 can be solved analytically via
a linear system. So, we can easily compute the finite-sample MLE via nested fixed point
as well as via EPL iterations. Additionally, we see that ∇vG(θ, v) = I − Aθ and we can
easily verify that this is invertible if and only if θ ̸= −1. And since vj = θP−j, we also have
qi(θ, v) = qi(v), so that θ only influences qi through v(θ). This modification is made without
loss of generality in full MLE subject to the equilibrium constraint, so it is also valid here.
For k-EPL, we have Υ(θ, γ̂k−1) = v̂k−1 −∇vG(θ̂k−1, v̂k−1)

−1G(θ, v̂k−1), as in Algorithm (1).
All that remains now is to obtain v̂0 and θ̂0. Notice that the best response equations

imply θ = P j−1
P−j for j ∈ {1, 2}. So first, we obtain frequency estimators P̂ 1

0 and P̂ 2
0 . We then

use these to construct

θ̂0 =

P̂ 1
0−1

P̂ 2
0

+
P̂ 2
0−1

P̂ 1
0

2
,

v̂j0 = θ̂0P̂
−j
0 .

We run Monte Carlo simulations of this model to illustrate the performance of the es-
timators. We simulate 500 samples, each with 5,000 observations. We estimate the model
using MLE, ∞-EPL, and ∞-NPL.34 The results are summarized in Table 17. The MLE
and ∞-EPL estimates achieve mean −2.0017 and −2.0014, respectively, and mean squared
error (MSE) 0.0017 and 0.0017. The two-sample Kolmogorov-Smirnov p-value is equal to
1. Furthermore, k-EPL obtained convergence at k = 2 in all 500 datasets. This is unsur-
prising: with so many observations and only two players/actions, we get very precise initial

34By ∞-EPL and ∞-NPL, we mean that we iterate until ||θ̂k− θ̂k−1||∞ < 10−6 or k reaches 20. Estimation
was performed with Matlab R2017a using fmincon. The default tolerance of 10−6 is used for the solver.
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estimates, so iteration converges very quickly. The slight difference in means and MSE are
likely due to a combination of the tolerance used in estimation and non-linearity in the full
MLE objective function.

[Table 17 about here.]

On the other hand, ∞-NPL performs poorly as expected since this model was constructed
to be an example where ∞-NPL is inconsistent. The estimate has a mean of −1.0342 and
MSE of 0.9651. Almost all of the MSE is due to the asymptotic bias, so the estimate is
reliably converging to the wrong number.35

C Alternative Choices of Υ(·)

We have already mentioned that the choice of Υ used in the algorithm could be replaced with
full Newton steps without affecting the asymptotic results. These are only two of several
choices that yield the same asymptotic results, as shown in the next theorem.

Theorem 3. (Asymptotically Equivalent Definitions of Υ) The results of Theorems 1 and 2
hold when Υ is defined as any of the following, where γ̂k−1 = (θ̂k−1, Ŷk−1):

1. Υ(θ, γ̂k−1) = Ŷk−1 −∇YG(θ̂k−1, Ŷk−1)
−1G(θ, Ŷk−1).

2. Υ(θ, γ̂k−1) = Ŷk−1−Z(θ̂k−1, Ŷk−1)
−1G(θ, Ŷk−1), where Z is a continuously differentiable

function and Z(θ, Yθ) = ∇YG(θ, Yθ) for all θ.

3. Υ(θ, γ̂k−1) = Ŷk−1 −∇YG(θ, Ŷk−1)
−1G(θ, Ŷk−1).

Proof. All of the listed Υ(·) functions satisfy the zero Jacobian property, so the results from
the proofs of Theorems 1 and 2 carry through.

The first definition of Υ in the Theorem 3 is the one we have worked with so far. The
second definition is a generalization of the first and can allow researchers to circumvent the
need for an initial θ̂0 if they can find some Z(θ̂k−1, Ŷk−1) = Z(Ŷk−1) or even Z(θ̂k−1, Ŷk−1) = A

that has the required properties.36 We will show later on that this definition can be used in
single-agent dynamic discrete choice models. The third definition, which is an exact Newton

35There were 17 samples for which NPL converged in 3 or fewer iterations. The mean and MSE for these
samples were −1.9932 and 0.0012, respectively. For the other 483 samples, convergence took at least 12
iterations. These had a mean and MSE of −0.9991 and 0.9991, respectively. Aguirregabiria and Marcoux
(2021) explain why the estimates converge to “good” values in some samples even though the equilibrium
generating the data is unstable.

36Of course, Z(θ̂k−1, Ŷk−1) = ∇Y G(θ̂k−1, Ŷk−1) is an option, so definition 2 includes definition 1.
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step, is likely the least useful because it requires inverting GY (θ, Ŷk−1) at multiple values of θ,
which can be computationally burdensome and also will introduce additional nonlinearities
in the objective function for optimization.37 However, we include it for completeness. For
all of the definitions of Υ in the theorem, the results of Lemma 2 hold when all appropriate
terms are replaced with (θ∗, Y ∗) or (θ̂MLE, ŶMLE). So, the proof techniques from Theorems 1
and 2 can be used to prove Theorem 3.

37More precisely, it only requires solving the linear system GY (θ, Ŷk−1)b = G(θ, Ŷk−1) for b. However, the
point about computational burden remains.
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Figure 1: Distributions of θ̂RN and θ̂EC for ∞-EPL and ∞-NPL Over 1000 Replications
(N = 6400) 50
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Figure 2: Distributions of Iterations and Computational Time for ∞-EPL and ∞-NPL Over
1000 Replications (N = 6400)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.018 0.007 0.008 0.004 0.002 0.004 0.004 0.005
θFC,2 -1.8 -0.016 0.007 0.007 0.003 0.002 0.004 0.003 0.004
θFC,3 -1.7 -0.018 0.003 0.003 -0.001 -0.002 0.000 -0.001 0.000
θFC,4 -1.6 -0.015 0.003 0.004 0.000 -0.001 0.001 0.000 0.001
θFC,5 -1.5 -0.013 0.003 0.004 0.000 -0.001 0.000 0.000 0.000
θRS 1.0 -0.018 0.010 0.010 0.013 0.014 0.015 0.014 0.015
θRN 1.0 -0.068 0.034 0.034 0.038 0.040 0.044 0.041 0.044
θEC 1.0 -0.000 0.002 0.003 -0.001 -0.002 -0.001 -0.001 -0.001
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013
θFC,2 -1.8 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
θFC,3 -1.7 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012
θFC,4 -1.6 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011
θFC,5 -1.5 0.009 0.010 0.010 0.009 0.009 0.009 0.009 0.009
θRS 1.0 0.010 0.013 0.013 0.013 0.014 0.014 0.014 0.014
θRN 1.0 0.091 0.123 0.123 0.128 0.128 0.130 0.129 0.131
θEC 1.0 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 5 4
Max 1 1 2 2 3 3 100 7
IQR 2 0
Non-Conv. 0.1% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 17.88 118.42 31.33 234.82 44.35 350.07 76.55 481.70
Mean 0.02 0.12 0.03 0.23 0.04 0.35 0.08 0.48
Median 0.02 0.12 0.03 0.23 0.04 0.35 0.07 0.46
Med./Iter. 0.018 0.118 0.016 0.117 0.015 0.116 0.014 0.116

Table 1: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 1 (θRN = 1),
Small Sample (N = 1600)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.018 0.003 0.003 0.000 -0.001 0.000 0.000 0.000
θFC,2 -1.8 -0.017 0.002 0.002 -0.001 -0.002 -0.001 -0.001 -0.001
θFC,3 -1.7 -0.016 0.001 0.001 -0.002 -0.002 -0.001 -0.001 -0.001
θFC,4 -1.6 -0.013 0.003 0.003 -0.000 -0.001 -0.000 -0.000 -0.000
θFC,5 -1.5 -0.012 0.001 0.001 -0.002 -0.003 -0.002 -0.002 -0.002
θRS 1.0 -0.022 0.003 0.003 0.004 0.005 0.005 0.005 0.005
θRN 1.0 -0.078 0.010 0.010 0.011 0.012 0.013 0.013 0.013
θEC 1.0 -0.001 0.000 0.001 -0.002 -0.003 -0.002 -0.002 -0.002
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
θFC,2 -1.8 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
θFC,3 -1.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
θFC,4 -1.6 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
θFC,5 -1.5 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.002
θRS 1.0 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
θRN 1.0 0.027 0.030 0.030 0.030 0.030 0.030 0.031 0.030
θEC 1.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 5 4
Max 1 1 2 2 3 3 8 4
IQR 1 0
Non-Conv. 0% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 43.91 148.28 75.66 284.75 105.45 416.53 154.35 548.53
Mean 0.04 0.15 0.08 0.28 0.11 0.42 0.15 0.55
Median 0.04 0.15 0.07 0.28 0.10 0.41 0.15 0.55
Med./Iter. 0.043 0.147 0.037 0.141 0.034 0.138 0.031 0.136

Table 2: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 1 (θRN = 1),
Large Sample (N = 6400)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.005 -0.002 -0.002 -0.001 -0.008 -0.003 0.006 -0.003
θFC,2 -1.8 -0.002 -0.004 -0.005 -0.002 -0.005 -0.004 0.010 -0.004
θFC,3 -1.7 0.003 -0.006 -0.007 -0.001 -0.000 -0.004 0.014 -0.004
θFC,4 -1.6 0.007 -0.008 -0.009 -0.002 0.002 -0.006 0.016 -0.006
θFC,5 -1.5 0.011 -0.009 -0.010 -0.002 0.005 -0.007 0.017 -0.008
θRS 1.0 0.012 0.007 0.006 -0.006 -0.006 0.007 -0.063 0.008
θRN 1.0 0.056 0.024 0.017 -0.026 -0.027 0.025 -0.261 0.030
θEC 1.0 -0.002 -0.001 -0.001 0.004 0.001 -0.002 0.027 -0.003
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.016 0.015 0.015 0.015 0.016 0.015 0.014 0.015
θFC,2 -1.8 0.016 0.015 0.015 0.014 0.015 0.015 0.013 0.015
θFC,3 -1.7 0.016 0.015 0.015 0.014 0.015 0.015 0.013 0.015
θFC,4 -1.6 0.016 0.015 0.015 0.014 0.015 0.015 0.012 0.015
θFC,5 -1.5 0.018 0.017 0.017 0.016 0.016 0.016 0.013 0.017
θRS 1.0 0.029 0.023 0.023 0.019 0.018 0.021 0.010 0.021
θRN 1.0 0.468 0.365 0.359 0.310 0.282 0.327 0.162 0.335
θEC 1.0 0.008 0.007 0.007 0.006 0.006 0.006 0.004 0.006
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 100 5
Max 1 1 2 2 3 3 100 30
IQR 75.5 2
Non-Conv. 61.2% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 18.26 120.53 32.92 239.61 47.60 358.72 1030.36 672.18
Mean 0.02 0.12 0.03 0.24 0.05 0.36 1.03 0.67
Median 0.02 0.12 0.03 0.24 0.05 0.36 1.44 0.60
Med./Iter. 0.018 0.120 0.016 0.119 0.016 0.119 0.014 0.118

Table 3: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 2 (θRN = 2.5),
Small Sample (N = 1600)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.002 -0.000 -0.001 -0.002 -0.005 -0.002 0.006 -0.002
θFC,2 -1.8 0.002 -0.002 -0.003 -0.002 -0.002 -0.002 0.008 -0.002
θFC,3 -1.7 0.006 -0.004 -0.005 -0.002 0.000 -0.003 0.009 -0.003
θFC,4 -1.6 0.012 -0.004 -0.005 -0.001 0.004 -0.002 0.010 -0.002
θFC,5 -1.5 0.019 -0.004 -0.005 -0.001 0.007 -0.003 0.008 -0.003
θRS 1.0 -0.001 0.001 0.001 -0.003 -0.005 0.001 -0.040 0.001
θRN 1.0 0.003 0.002 -0.003 -0.013 -0.018 0.001 -0.163 0.002
θEC 1.0 0.003 -0.000 0.000 0.000 0.000 -0.001 0.015 -0.001
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
θFC,2 -1.8 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.004
θFC,3 -1.7 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.004
θFC,4 -1.6 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.004
θFC,5 -1.5 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
θRS 1.0 0.007 0.006 0.006 0.005 0.005 0.006 0.003 0.006
θRN 1.0 0.109 0.096 0.095 0.085 0.084 0.087 0.048 0.088
θEC 1.0 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 100 4
Max 1 1 2 2 3 3 100 8
IQR 52 1
Non-Conv. 68.9% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 35.34 135.62 64.32 266.26 92.87 395.24 2186.69 586.21
Mean 0.04 0.14 0.06 0.27 0.09 0.40 2.19 0.59
Median 0.03 0.13 0.06 0.26 0.09 0.39 2.75 0.53
Med./Iter. 0.034 0.135 0.032 0.132 0.031 0.131 0.028 0.130

Table 4: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 2 (θRN = 2.5),
Large Sample (N = 6400)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.100 0.010 0.008 -0.002 -0.095 0.002 0.012 0.002
θFC,2 -1.8 -0.088 0.000 -0.001 -0.000 -0.074 0.002 0.031 0.002
θFC,3 -1.7 -0.066 -0.010 -0.011 0.000 -0.040 0.001 0.062 0.002
θFC,4 -1.6 -0.016 -0.016 -0.017 0.004 0.026 0.002 0.131 0.002
θFC,5 -1.5 0.050 -0.007 -0.005 0.009 0.156 0.000 0.211 -0.000
θRS 1.0 0.042 -0.005 -0.019 -0.009 -0.108 0.001 -0.244 0.001
θRN 1.0 0.198 -0.067 -0.147 -0.055 -0.640 0.004 -1.382 0.008
θEC 1.0 -0.009 0.025 0.031 0.010 0.073 0.001 0.218 -0.000
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.038 0.022 0.022 0.023 0.032 0.023 0.019 0.023
θFC,2 -1.8 0.034 0.020 0.020 0.021 0.026 0.021 0.018 0.021
θFC,3 -1.7 0.030 0.020 0.019 0.019 0.021 0.020 0.020 0.020
θFC,4 -1.6 0.028 0.019 0.019 0.019 0.019 0.019 0.032 0.019
θFC,5 -1.5 0.039 0.022 0.021 0.019 0.041 0.019 0.057 0.019
θRS 1.0 0.022 0.006 0.006 0.004 0.015 0.004 0.061 0.004
θRN 1.0 0.602 0.126 0.131 0.090 0.456 0.086 1.924 0.086
θEC 1.0 0.022 0.007 0.007 0.005 0.009 0.005 0.051 0.005
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 100 5
Max 1 1 2 2 3 3 100 9
IQR 0 1
Non-Conv. 100% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 18.64 125.88 33.88 246.85 48.96 367.25 1512.68 654.05
Mean 0.02 0.13 0.03 0.25 0.05 0.37 1.51 0.65
Median 0.02 0.12 0.03 0.24 0.05 0.36 1.48 0.62
Med./Iter. 0.018 0.124 0.017 0.122 0.016 0.120 0.015 0.119

Table 5: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 3 (θRN = 4),
Small Sample (N = 1600)
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Bias True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 -0.098 0.008 0.007 0.000 -0.098 0.000 0.013 0.000
θFC,2 -1.8 -0.086 -0.003 -0.003 0.000 -0.078 0.000 0.031 0.000
θFC,3 -1.7 -0.063 -0.015 -0.016 0.001 -0.045 -0.001 0.062 -0.001
θFC,4 -1.6 -0.013 -0.024 -0.025 0.004 0.017 0.000 0.130 0.000
θFC,5 -1.5 0.057 -0.025 -0.023 0.009 0.139 0.000 0.207 0.000
θRS 1.0 0.034 0.011 -0.003 -0.010 -0.096 0.000 -0.243 0.000
θRN 1.0 0.155 0.024 -0.054 -0.057 -0.570 -0.001 -1.377 0.000
θEC 1.0 0.001 0.011 0.016 0.008 0.060 0.000 0.216 0.000
MSE True 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
θFC,1 -1.9 0.016 0.005 0.005 0.005 0.015 0.005 0.005 0.005
θFC,2 -1.8 0.014 0.005 0.005 0.005 0.011 0.005 0.005 0.005
θFC,3 -1.7 0.011 0.005 0.005 0.005 0.007 0.005 0.008 0.005
θFC,4 -1.6 0.007 0.006 0.006 0.005 0.005 0.005 0.020 0.005
θFC,5 -1.5 0.012 0.006 0.006 0.005 0.024 0.005 0.046 0.005
θRS 1.0 0.006 0.002 0.001 0.001 0.010 0.001 0.060 0.001
θRN 1.0 0.167 0.037 0.034 0.023 0.335 0.023 1.900 0.023
θEC 1.0 0.005 0.002 0.002 0.001 0.004 0.001 0.048 0.001
Iterations 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Median 1 1 2 2 3 3 100 5
Max 1 1 2 2 3 3 100 6
IQR 0 1
Non-Conv. 100% 0%
Time (sec.) 1-NPL 1-EPL 2-NPL 2-EPL 3-NPL 3-EPL ∞-NPL ∞-EPL
Total 40.48 145.93 75.22 278.93 108.36 410.64 3332.77 620.36
Mean 0.04 0.15 0.08 0.28 0.11 0.41 3.33 0.62
Median 0.04 0.14 0.07 0.28 0.11 0.41 3.30 0.65
Med./Iter. 0.039 0.145 0.037 0.138 0.035 0.136 0.033 0.133

Table 6: Monte Carlo Results for Aguirregabiria and Mira (2007): Experiment 3 (θRN = 4),
Large Sample (N = 6400)

57



Table 7: Wholesale Clubs: Summary Statistics

Statistic Value
Average active firms 0.348
S.D. active firms 0.622
AR(1) for active firms 0.987
Average entrants 0.010
Average exits 0.006
Excess turnover 0.000
Correlation between entries and exits -0.007
Probability of being active

Sam’s Club 0.201
Costco 0.093
BJ’s 0.054

Distribution of market size
s = 1 0.332
s = 2 0.295
s = 3 0.179
s = 4 0.125
s = 5 0.069

Markets 1,610
Years 12
Observations (Markets × Years) 19,320

58



Table 8: Wholesale Clubs: Parameter Estimates

Parameter Estimate S.E. 95% CI
θFC,SC -0.136 (0.030) [-0.196, -0.079]
θFC,CC -0.130 (0.031) [-0.188, -0.073]
θFC,BJ -0.197 (0.030) [-0.255, -0.143]
θRS 0.106 (0.009) [0.090, 0.124]
θRN 0.137 (0.030) [0.087, 0.210]
θEC 8.855 (0.163) [8.559, 9.186]
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Table 9: Wholesale Clubs: Counterfactual (Aggregate)

Simulated Counterfactual
Observed Mean S.E. Mean S.E.

Active Firms 0.348 0.349 (0.017) 0.398 (0.023)
Entries 0.010 0.010 (0.001) 0.016 (0.002)
Exits 0.006 0.006 (0.001) 0.005 (0.001)

Markets with
0 Firms 1156 1164.665 (27.805) 1156.434 (28.576)
1 Firms 321 340.598 (24.424) 300.371 (22.650)
2 Firms 119 93.426 (12.663) 118.948 (15.066)
3 Firms 14 11.311 (4.940) 34.247 (9.687)

60



Table 10: Wholesale Clubs: Counterfactual (By Market Size)

Sam’s Club Costco BJ’s

Mean S.E. Mean S.E. Mean S.E.
Estimated
s = 1 3.103 (1.359) 3.876 (1.522) 1.474 (0.854)
s = 2 19.384 (4.153) 12.480 (3.134) 5.739 (2.011)
s = 3 86.238 (8.263) 24.618 (4.534) 18.299 (4.044)
s = 4 127.656 (11.218) 54.597 (7.234) 29.962 (5.098)
s = 5 81.056 (8.290) 59.769 (7.252) 33.458 (5.734)

Counterfactual
s = 1 3.169 (1.441) 3.943 (1.799) 1.494 (0.819)
s = 2 19.892 (4.232) 12.889 (3.268) 5.784 (2.208)
s = 3 88.295 (8.959) 28.575 (4.945) 21.138 (4.094)
s = 4 135.488 (11.393) 70.326 (8.880) 41.387 (7.177)
s = 5 87.731 (8.902) 72.334 (8.468) 49.016 (8.026)
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Table 11: Wholesale Clubs: Counterfactual (Profits)

Simulated Counterfactual
Mean S.E. Mean S.E.

Sam’s Club 20.342 (0.114) 20.753 (0.155)
Costco 19.566 (0.080) 20.051 (0.146)
BJ’s 19.020 (0.051) 19.384 (0.131)
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Table 12: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) NPL-Stable
Equilibrium (i)

Obs. Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL
N

=
25
0

θM = 1.2
Mean Bias -0.0579 -0.0277 -0.0158 0.0277

MSE 0.0461 0.0376 0.0368 0.0312

θC = −2.4
Mean Bias 0.1120 0.0425 0.0294 -0.0482

MSE 0.1642 0.1061 0.0585 0.0512

θEC = −0.2
Mean Bias -0.0393 -0.0205 -0.0270 -0.0039

MSE 0.0494 0.0338 0.0116 0.0045
Converged % 92.6% 97.5%

Iterations Median 70 8
IQR 28 2

Time (min.) Total 0.4481 0.1047

N
=

10
00

θM = 1.2
Mean Bias -0.0165 -0.0050 -0.0044 0.0033

MSE 0.0116 0.0107 0.0083 0.0059

θC = −2.4
Mean Bias 0.0340 0.0119 0.0076 -0.0052

MSE 0.0423 0.0320 0.0106 0.0076

θEC = −0.2
Mean Bias -0.0127 -0.0061 -0.0059 -0.0012

MSE 0.0123 0.0086 0.0018 0.0008
Converged % 99.5% 99.9%

Iterations Median 70 6
IQR 19 1

Time (min.) Total 0.5847 0.0743
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Table 13: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) NPL-Unstable
Equilibrium (ii)

Obs. Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL
N

=
25
0

θM = 1.2
Mean Bias -0.1322 -0.1461 -0.2099 -0.0309

MSE 0.0902 0.0988 0.0622 0.0740

θC = −2.4
Mean Bias 0.2793 0.2617 0.6719 0.0717

MSE 0.4643 0.5121 0.4804 0.4106

θEC = −0.2
Mean Bias -0.0777 -0.0764 -0.3110 -0.0441

MSE 0.1058 0.1270 0.1117 0.1076
Converged % 96.1% 100%

Iterations Median 34 9
IQR 10 3

Time (min.) Total 0.3011 0.0785

N
=

10
00

θM = 1.2
Mean Bias -0.0432 -0.0385 -0.2093 -0.0013

MSE 0.0210 0.0205 0.0480 0.0155

θC = −2.4
Mean Bias 0.0952 0.0612 0.6636 0.0047

MSE 0.1162 0.1078 0.4459 0.0829

θEC = −0.2
Mean Bias -0.0269 -0.0122 -0.2983 -0.0039

MSE 0.0283 0.0279 0.0923 0.0222
Converged % 99.7% 100%

Iterations Median 32 7
IQR 6 1

Time (min.) Total 0.3585 0.0946
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Table 14: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) Equilibrium (iii)
with N = 1000

Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL

θM = 1.2
Mean Bias -0.0419 -0.0383 -0.2099 -0.0003

MSE 0.0204 0.0194 0.0480 0.0174

θC = −2.4
Mean Bias 0.0948 0.0625 0.6806 0.0043

MSE 0.1127 0.1000 0.4683 0.0987

θEC = −0.2
Mean Bias -0.0277 -0.0133 -0.3146 -0.0044

MSE 0.0286 0.0265 0.1023 0.0277
Converged % 99.8% 100%

Iterations Median 30 8
IQR 5 2

Time (min.) Total 0.3486 0.1026
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Table 15: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) with Noisy
Starting Values (N = 250)

Equilibrium (i) Equilibrium (ii)
Parameter Statistic ∞-NPL ∞-EPL ∞-NPL ∞-EPL

θM = 1.2
Mean Bias -0.0827 0.0266 -0.2116 -0.0855

MSE 0.0648 0.0756 0.0630 0.1054

θC = −2.4
Mean Bias 0.1286 -0.0431 0.6738 0.2055

MSE 0.1282 0.2234 0.4832 0.5810

θEC = −0.2
Mean Bias -0.0672 0.0020 -0.3107 -0.0965

MSE 0.0251 0.0073 0.1118 0.1275
Converged % 89.2% 96.6% 99.3% 99.9%

Iterations Median 72 9 34 10
IQR 36 3 11 3

Time (min.) Total 0.4024 0.1217 0.2533 0.0889
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Table 16: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) Without Con-
sistent Starting Values

Equilibrium (i) Equilibrium (ii)
Obs. Parameter Statistic ∞-NPL ∞-EPL ∞-NPL ∞-EPL

N
=

25
0

θM = 1.2
Mean Bias -0.0127 0.0295 -0.2035 -0.0083

MSE 0.0359 0.0325 0.0601 0.0812

θC = −2.4
Mean Bias 0.0252 -0.0516 0.6634 0.0088

MSE 0.0566 0.0552 0.4699 0.4649

θEC = −0.2
Mean Bias -0.0255 -0.0034 -0.3078 -0.0122

MSE 0.0113 0.0046 0.1100 0.1228
Converged % 89.8% 97.2% 95.2% 100%

Iterations Median 347 53 176 53
IQR 117 18 46 10

Time (min.) Total 1.9699 0.5606 1.2573 0.4207

N
=

10
00

θM = 1.2 Mean Bias -0.0044 0.0019 -0.2002 -0.0100
MSE 0.0083 0.0057 0.0444 0.0173

θC = −2.4 Mean Bias 0.0076 -0.0027 0.6517 0.0264
MSE 0.0106 0.0065 0.4303 0.0962

θEC = −0.2 Mean Bias -0.0059 -0.0016 -0.2915 -0.0146
MSE 0.0018 0.0008 0.0884 0.0255

Converged % 95.1% 98.7% 99.6% 100%

Iterations Median 362 50 161 52
IQR 83 12 18 8

Time (min.) Total 2.8453 0.6559 1.5548 0.5956
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Table 17: Pesendorfer and Schmidt-Dengler (2010) Monte Carlo Results

Estimator Mean MSE
MLE -2.0017 0.0017

∞-EPL -2.0014 0.0017
∞-NPL -1.0342 0.9652
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