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1. Introduction

Home Equity Conversion Mortgage (HECM) loans are federally-insured reverse mortgages
backed by the Federal Housing Administration (FHA). The program is designed to help
older homeowners age in place by allowing them to access home equity without making
monthly payments, with payment of the loan being deferred until the loan is terminated.

Using a unique dataset of HECM borrowers from 2007–2014, we estimate borrowers’
utility functions and investigate the implications of various counterfactual scenarios and
policy changes on HECM outcomes and borrower welfare. Based on our estimates of
HECM borrowers’ preference parameters, on average borrowers value HECMs more when
they are younger, have less access to revolving credit, or have less net equity (higher
outstanding HECM balances relative to the value of their home). They also tend to value
the program more when they have higher income, when interest rates are higher, or when
housing prices have recently declined. Variations in these variables over time affect how
much HECM borrowers value their HECM loans and their decisions to terminate.

The decisions of HECM borrowers to default, terminate, or refinance are inherently
dynamic. Terminations are of particular interest because HECM loans are non-recourse
loans insured by the FHA. This insurance provides borrowers with a put option which,
along with other dynamic considerations, determines when borrowers choose to termi-
nate the loan. Accurately predicting such terminations is important for evaluating the
solvency of the FHA’s Mutual Mortgage Insurance Fund (MMIF), which pays lenders
when mortgagors default.

Naturally, policymakers are interested in reducing adverse terminations and defaults
and have enacted participation constraints in the form of initial credit and income require-
ments. We simulate our estimated model under these requirements in order to evaluate
their effects on both loan outcomes and borrower welfare. Our simulations indicate that
these policies would indeed decrease default rates and would also lower the fraction of
households with negative net equity. The welfare cost is that households with higher than
average valuations for the program would be excluded.

Our results complement other recent attempts of using dynamic models to understand
how households value reverse mortgages. Nakajima and Telyukova (2017) calibrate a
life-cycle model of retirement and use it to analyze the ex-ante welfare gain from reverse
mortgages. Davidoff (2015) simulates the value of the put option minus the initial costs and
fees in order to estimate a lower bound on the net present value of HECMs to households.
He argues that, contrary to a commonly held belief, “high costs” cannot explain weak
HECM demand.

In contrast to these studies, our valuations are estimated from the revealed preferences

2



and observed characteristics of borrowers over time in combination with an econometric
model of their dynamic decision making behavior. Our approach is based on methods that
have been widely used in economics since the pioneering work of authors such as Miller
(1984), Wolpin (1984), Pakes (1986), Rust (1987), Hotz and Miller (1993), and Keane and
Wolpin (1994, 1997). In housing economics specifically, structural dynamic discrete choice
models have formed the methodological basis of recent studies on forward mortgage
default by Bajari, Chu, Nekipelov, and Park (2016) (henceforth BCNP), Ma (2014), and
Fang, Kim, and Li (2016) as well as work on neighborhood choice by Bayer, McMillan,
Murphy, and Timmins (2016).

Our work is also related to the study of reverse mortgage termination and default.
Davidoff and Welke (2007) found that HECM borrowers have a high rate of termination
and attribute that to selection on mobility and high sensitivity to house price changes.
Given the high rates of termination, accurately predicting terminations is important for
the HECM program. In an effort to improve assessments of HECM loan performance,
Szymanoski, Enriquez, and DiVenti (2007) estimate HECM termination hazards by age
and borrower type.

In addition to termination, HECM borrowers can default for not paying property
taxes or homeowner insurance premiums. Moulton, Haurin, and Shi (2015) identify the
factors that predict default, including borrower credit characteristics and the amount of
the initial withdrawal on the HECM. Our work contributes to this area of the literature in
that our model allows us to predict rates of termination, tax and insurance default, and
refinancing at the borrower-year level, and thus to examine how these rates vary with
individual borrower characteristics. Based on the estimated structural parameters, we
obtain values from the ex-ante value function which provides a measure on how much an
HECM borrower values the HECM loan, and we identify which borrower characteristics
are associated with a higher value.

Motivated by the institutional features of the HECM program on which our model is
based, we develop a new semiparametric identification result for the household utility
function and discount factor in our model which does not require assuming that the
functional form of utility is known for one choice.1 In particular, our model has two
distinct, observable terminating actions which allow us to identify the period payoff

1In light of work by Aguirregabiria (2005, 2010), Bajari, Hong, and Nekipelov (2013), Norets and Tang
(2014), Aguirregabiria and Suzuki (2014), Arcidiacono and Miller (2015), Chou (2016), and Kalouptsidi, Scott,
and Souza-Rodrigues (2016), it is now well known in the literature that using an incorrect functional form for
one choice as an identifying restriction on utility (i.e., a zero normalization) can lead to bias in conditional
choice probability estimates for counterfactuals and also welfare predictions, except in special cases. By
developing a model where the full utility function is identified and estimable, our analysis avoids these pitfalls.
Additionally, work by Magnac and Thesmar (2002), Chung, Steenburgh, and Sudhir (2014), Fang and Wang
(2015), BCNP, Komarova, Sanches, Silvia Junior, and Srisuma (2016), Mastrobuoni and Rivers (2016), and
Abbring and Daljord (2018) underscores the importance of estimating time preferences.
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functions for all choices. Our approach generalizes to other single-agent models with
multiple terminating actions under conditions we discuss in Section 3 and formalize in
Appendix A. We estimate the model using a multi-step plug-in semiparametric approach
inspired by that of BCNP.2 This approach is simple and computationally tractable: it
does not require solving a nested dynamic programming problem, forward simulation,
backwards induction, or optimization of difficult functions. As such, it can be implemented
using built-in commands in most statistical packages.

In contrast to previous work by BCNP, Arcidiacono and Miller (2015), Chou (2016)
and others, our identification result is applicable in cases where the utility function itself
is also of interest (not only counterfactual implications) and when the utility function
may be nonlinear. Furthermore, our approach is valid when the final decision period
is not necessarily observed or when an appropriate exclusion restriction may not be
available. Full identification of the utility function also implies identification of all types of
counterfactuals including non-additive and non-linear changes in utilities and changes in
transition probabilities. Yet, these broad classes of counterfactuals are problematic when
an ad hoc utility assumption is imposed in order to estimate the model (Kalouptsidi et al.,
2016).

2. A Model of HECM Borrower Behavior

We begin with some institutional details of the HECM program and then develop a
structural, dynamic discrete choice model for households that have or are considering a
HECM.

To obtain a HECM a borrower must be 62 years of age or older. The home must be
the borrower’s principal residence and must be either a single-family home or part of
a 2–4 unit dwelling. Potential borrowers must also complete a mandatory counseling
session with a HUD approved counseling agency. During our sample period, there were
no income or credit requirements for HECM borrowers, although such requirements have
since been enacted and are among the counterfactual policy changes we consider in this
paper.3 The amount one can borrow, known as the principal limit, is determined by the
age of the youngest borrower, the appraised value of the home up to the FHA mortgage
limit, and the interest rate. HECMs are non-recourse loans, meaning that borrowers will

2We show that the approach of BCNP for identifying the discount factor, based on nonstationarity of the
conditional choice probabilities, is valid in our model as well, and we estimate the discount factor as part of
our analysis.

3Initial disbursement limits on HECMs were enacted by HUD, effective for all loans originated (with case
numbers assigned) on or after September 30, 2013 (Mortgagee Letter 2013-27). HUD’s requirement for a
financial assessment became effective for all HECM loans originated (with case numbers assigned) after April
27, 2015 (Mortgagee Letter 2015-06).
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never owe more than the loan balance or 95% of the current appraised value of the home,
whichever is lower. Borrowers cannot be compelled to use assets other than the property
to repay the debt.

Our model covers decisions related to both HECM take-up and HECM outcomes.4

Figure 1 summarizes the decisions households make in our model. Households in the
model choose whether to take up HECMs, and if they do, what types of HECMs. During
our sample period, borrowers could choose between fixed- (FRM) and adjustable rate
(ARM) HECMs. Fixed-rate HECM borrowers receive the entire principal limit in an up-
front lump sum payment.5 On the other hand, borrowers with adjustable-rate HECMs
have more payment disbursement options. They may, for example, choose to make only a
partial withdrawal initially and later make unscheduled withdrawals or receive payments
in scheduled installments. Note that some borrowers with adjustable rate HECMs still
utilize a large amount of credit (defined as more than 80% of available credit) upon loan
closing.6 The choices of FRM or ARM and the amount of upfront credit utilization have
important implications for later years. The unused portion of the credit line grows at
the same rate as being charged on the loan balance which equals the interest rate plus
the mortgage insurance premium, and can be tapped to fulfill future cash needs. Several
important choices are observed for an HECM household, including termination, refinance
into another HECM, default on property tax or home insurance, and continue and keep
the loan in good standing.

We index households by i and let t ∈ {0, 1, . . . , T} denote the number of years since
loan closing, with t = 0 denoting the take-up period. Each period households choose an
action ait from a finite set of alternatives At. Households make these decisions taking
into account their current state as characterized by a state vector sit. We describe the
specific state variables used in Section 4 below, when we discuss our data sources. In the
remainder of this section we complete the description of the general structural model,
including the payoff functions and value functions which are the main objects of interest
in our empirical analysis.

Households in period t = 0 have completed the mandatory HECM counseling but have
not yet closed on a HECM. Hence, cohorts in our data are defined by the year of counseling.

4Like all dynamic discrete choice models, in reality a household’s HECM decisions are embedded in a
larger utility maximization problem with a budget constraint that fully incorporates capital gains and losses.
We do not observe household consumption or savings, and we only observe income in the take-up period, so
we cannot estimate this larger model. Hence, the scope of this paper is limited to this “partial optimization”
model over HECM decisions.

5To reduce potential losses to its insurance fund, HUD issued a moratorium on the fixed rate, full draw
HECM on June 18, 2014 (Mortgagee Letter 2014-11).

6Our definition of a “large draw” as at least 80% of available credit was motivated by the cutoffs used in
the HUD/FHA actuarial reports: 0-80% and 80-100% withdrawals for fixed rate HECMs and 0-40%, 40-80%,
and 80-100% for adjustable rate HECMs (IFE, 2015, Exhibit IV-10).
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Households in period t = 0 make a take-up decision and, conditional on obtaining a
HECM, in periods t > 0 they make decisions related to the HECM itself. Our focus is
on HECM households (t > 0), but we note that accounting for the take-up decisions is
important since some of our counterfactuals investigate scenarios where certain households
are prohibited from taking-up a HECM. By backwards induction, the continuation values
in the take-up problem depend on the decision process for HECM borrowers, so we first
discuss the model for HECM households and return to the take-up model for counseled
households below.

2.1. HECM Household Decisions

For a HECM household, there are four possible actions in At (corresponding to the decision
node in Figure 1). The simplest decision a household can make is to simply continue living
in the home and maintaining the reverse mortgage in good standing (ait = C, “continue”).
Second, a household could choose to refinance the HECM with another HECM (ait = R,
“refinance”). Such households obtain a new HECM with different terms and hence they
remain in the pool of HECM households in subsequent periods. Next, households may
choose to default (ait = D, “default”). While forward mortgagors default by failing to make
the scheduled payments, HECM borrowers are not required to make mortgage payments.
Rather, default occurs when the homeowner fails to make scheduled property tax and
insurance payments and there are no remaining funds on the HECM credit line (otherwise,
the lender could use HECM funds to make the payments on behalf of the homeowner).
Default can also occur if the homeowner fails to satisfy other loan obligations such as
occupancy and property maintenance (Mortgagee Letter 2015-10). In practice, the HECM
is not marked “due and payable” and the foreclosure process do not begin immediately
when a household defaults. Some borrowers in our sample remain in default for up to
four years without termination of the HECM7.To account for this, we assume that the loan
is not forced to terminate unless a household is in default for three consecutive periods.
Finally, a household may terminate the loan (ait = T, “terminate”) for events other than
defaulting on tax or insurance and refinance, which can happen if the mortgagor(s) sell
the home in order to move, downsize or take advantage of house price changes since loan

7Our sample ends in 2014. Since 2015, HUD has provided new rules clarifying the process in case of
a default. In 2015, HUD clarified that the mortgagee must submit a “due and payable” request once the
HECM borrower is in default (Mortgagee Letter 2015-10), and that the mortgagee may delay the initiation
of foreclosure proceedings if certain loss mitigation policies can be followed, such as repayment plans, with
“goal of keeping HECM borrowers in their homes whenever possible” (Mortgagee Letter 2015-11, 2016-07).
Additional delays to the foreclosure process may occur for HECM loans that experience tax or insurance
default after being assigned to HUD (GAO 2019). HECM loans in good standing may be assigned to HUD
when the balance on the loan reaches 98 percent of the maximum claim amount.
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origination. Hence, the set of feasible actions for HECM households is

At = {Continue, Refinance, Default, Terminate} = {C, R, D, T}.

Households that terminate or terminally default receive the payoff and exit the model
immediately. For the remaining households, we account for the possibility that the HECM
may terminate exogenously due to death of the borrowers by augmenting the discount
factor with a survival probability.8

Clearly HECM borrowers make several decisions other than the four simple discrete
decisions we focus on in the dynamic discrete choice model. These secondary choices and
the factors that influence them are captured by the vector of state variables, introduced
below. For example, after choosing to “continue” those households with credit line HECMs
also decide how much additional money to withdraw. This choice is incorporated in the
state transition process for available HECM credit, with the difference between consecutive
periods being driven by the interest rate and the amount withdrawn.

2.2. Utility Functions, Dynamic Decisions, and Value Functions

The dynamic problem faced by HECM households can be thought of as optimal stopping
problem since terminal default and termination are irreversible decisions. Hence, these
terminating actions are equivalent to choosing a lump sum payoff equal to the present
discounted value of the future utility received after leaving the model. Borrowers who
continue to pay or refinance receive utility in the period which is a combination of utility
from housing services and being able to draw on the line of credit and disutility from
making property tax and insurance payments and from maintaining the home. Households
who default once or at most twice consecutively also receive utility from housing services
but not from the line of credit nor do they incur the disutility of making property tax and
insurance payments (and potentially not from maintaining the home).

We will describe the state variables in detail below, but for now we simply assume
that all payoff-relevant variables are captured by the observables sit and unobservables ε it.
The observable states sit include choice-specific state variables relevant for each individual
discrete choice as well as auxiliary state variables that do not appear in the choice-specific
payoffs directly, but influence the evolution of the payoff-relevant state variables. For
example, two state variables included in the payoffs in our application are net equity and
available HECM credit. These evolve in part based on the interest rate and the housing
price index, which are therefore included as auxiliary components of sit that do not appear

8We assume that each household’s beliefs about continuing to the next period are consistent with mortality
rates from the United States obtained from the 2011 CDC life tables. For loans with two borrowers, we use the
joint probability that both borrowers die in the same year.

8



in the payoffs directly. State variables such as these are important for capturing the
influence of secondary decisions made by HECM households, such as cash withdrawals
from credit-line HECMs (which in part determine the evolution of available HECM credit).

In general, the period utility received by a household in state sit that chooses action
ait ∈ At is Ut(sit, ait, ε it), where ε it(ait) is an idiosyncratic, choice-specific error term.
Households in our model are forward-looking and discount future utility using a discount
factor b. We denote the the survival probability for household i, conditional on age and
sex in period t, by p(sit). As we show below, the discount factor is identified in our model
and we estimate it along with the utility function. A decision rule for a household is a
function δt : (sit, ε it) 7→ ait mapping states to actions in the choice set At. Because we
do not observe the idiosyncratic shocks ε it, we will also work with the corresponding
conditional choice probability (CCP) function or policy function σt(sit, ait).

Before describing the model more fully, we first briefly state three standard assumptions
invoked by Rust (1987), Hotz and Miller (1993), and the literature that followed.

Assumption 1 (Basic Assumptions). The primitives of the dynamic discrete choice model
have the following properties:

a. The state variables and errors follow a controlled, time-homogeneous, first-order
Markov process where the joint transition density can be factored as follows:

f (si,t+1, ε i,t+1 | sit, ε it, ait) = f (si,t+1 | sit, ait) f (ε i,t+1).

b. The payoffs are additively separable in the choice-specific errors and the deterministic
component is a time invariant function of sit and ait:

Ut(sit, ait, ε it) = u(sit, ait) + ε it(ait).

c. The choice-specific errors follow a known joint CDF Fε(·) which is absolutely continuous
with respect to Lebesgue measure with strictly positive density on R|At| and finite first
moments.

The first and second parts are conditional independence and additive separability
assumptions along the lines of Assumptions AS and CI of Rust (1994). We assume sit

follows a first-order Markov process that is conditionally independent from ε it but may
depend on ait and that households have rational expectations, hence they know the law
of motion of sit and can evaluate the conditional expectation of si,t+1 given sit and ait.
The third part requires that the distribution of errors is known and has full support,
which allows us to invoke the CCP inversion of Hotz and Miller (1993, Proposition 1).
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In our application and in some examples below, we will work under the assumption of
type I extreme value errors for analytical convenience. However, in light of results by
Norets and Takahashi (2013) and BCNP on the surjectivity of the mapping from CCPs
to differences in choice-specific value functions, it is not necessary to assume a specific
parametric distribution for our main identification results. It is known in the literature
that Assumption 1 alone does not provide sufficient restrictions to identify structure
parameters of the model (Rust (1994)). Magnac and Thesmar (2002) show that to identify
utility functions in each alternative, in addition to those in Assumption 1, restrictions on
the discount rate and the utility of a reference choice are also needed.

Following the literature, we define the ex ante value function Vδ
t (sit) as the expected

present discounted value received by a household i that behaves according to the sequence
of decision rules δ = (δ0, δ1, . . . , δT) in the current period and in the future. Let Iit be an
indicator variable equal to 0 if household i did not take up a HECM in period t = 0 or
took up a HECM that is no longer active due to termination, default, or death and equal
to 1 otherwise. Then,

(1) Vδ
t (sit) = Eδ

[
T

∑
τ=t

bτ−tUτ(siτ, δτ(siτ, ε iτ), ε iτ)Iiτ

∣∣∣∣∣ sit

]
.

Here, Eδ denotes the conditional expectation over future states given the current state and
that the household behaves according to the sequence of decision rules δ. The indicator Iit

ensures that households receive no additional utility after termination, terminal default,
death, or initially choosing not to take up a HECM. Since our model is a finite-horizon
model, the optimal decision rules can be determined via backwards induction. We assume
that households use this sequence of optimal decision rules and therefore we drop the
explicit dependence on δ in the remainder.

Importantly, our model has two distinct termination outcomes. As we show below, this
property allows us to identify the utility function without a normalization and therefore to
make unbiased welfare calculations and counterfactual predictions. For non-terminating
actions ait, households receive the mean utility u(sit, ait) plus the idiosyncratic shock.
Additionally, because they are forward-looking they also expect to receive additional utility
in the future. Households discount that utility appropriately and account for uncertainty
over future states. This includes periods in which a household chooses to default the first
or second time in a row (ait = D). On the other hand, when households terminate by
choosing ait = T, they receive the mean period utility u(sit, T) and the idiosyncratic shock
ε it(T), but no additional utility is received in the future. Hence, u(sit, T) can be thought of
as a termination payoff that includes any additional discounted expected utility received
in the future after leaving the HECM program. Finally, when a household terminates by
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defaulting for a third time in a row (ait = ai,t−1 = ai,t−2 = D), they receive the mean utility
for defaulting u(sit, D), the idiosyncratic shock, and because the HECM will be terminated,
the termination payoff u(sit, T).

In order to calculate conditional choice probabilities, we first introduce the choice-
specific value function vt(sit, ait,−1, ait) for HECM households in periods t > 0. Letting
βit = b× p(sit) denote the product of the discount factor and survival probability, we have

(2) vt(sit, ait,−1, ait) =

u(sit, C) + βit E[Vt+1(si,t+1) | sit, ait = C] ait = C,

u(sit, R) + βit E[Vt+1(si,t+1) | sit, ait = R] ait = R,

u(sit, D) + βit E[Vt+1(si,t+1) | sit, ait = D] ait = D, ait 6= ai,t−1 or ait 6= ai,t−2

u(sit, D) + u(sit, T) ai,t−2 = ai,t−1 = ait = D,

u(sit, T) ait = T.

The first three cases are standard in dynamic discrete choice models. Households receive
period utility and continue to the next period. Importantly, this is also true for the first
or second year of default. For a forward mortgage, default is usually considered to be
a terminal action (e.g., BCNP), however, in our sample of HECM households, missed
property tax or insurance payments (T&I default) were not followed quickly by foreclosure
proceedings. In addition, a household could pay off the past due property tax or insurance
balance. Therefore, in our model, we allow a household to continue with the HECM
after their first or second year of default. The dependence of the choice-specific value
function on the past sequence of actions is captured by ait,−1, which can vary in different
applications. In our setting, ait,−1 = {ai,t−2, ai,t−1}.

The last two cases correspond to the terminating actions: defaulting for three years or
direct termination. In our sample, 99.16% of households who default three years in a row
continue to default or terminate in the following year. Therefore, it seems reasonable to
expect that households who have stayed in default for three years will no longer actively
manage their HECM loans. Hence, such households no longer make decisions in our
model and instead receive a lump-sum terminal payoff. Similarly, no future utilities are
received from the HECM program when the direct termination action is taken.

Although we do not rely on a specific parametric distribution for identification, when
estimating the model we assume that the idiosyncratic shocks follow the type I extreme
value distribution. The mapping from differences in choice-specific value functions to
CCPs is invertible for a very broad class of continuous distributions (Hotz and Miller,
1993; Norets and Takahashi, 2013; Bajari et al., 2016), but it happens that the type I extreme
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value distribution is also analytically tractable. In this special case the conditional choice
probabilities have a convenient closed form in terms of the choice-specific value function:

(3) σt(sit, ait,−1, ait) =
exp (vt(sit, ait,−1, ait))

∑j∈At
exp (vt(sit, ait,−1, j))

.

We formalize our modeling assumptions below (see Assumption 1), such as additive
separability of payoffs and conditional independence of the idiosyncratic errors, which are
quite standard in the literature on structural dynamic discrete choice models (Rust, 1994;
Aguirregabiria and Mira, 2010).

2.3. HECM Take-Up Decisions

For a counseled household, there are four possible actions in A0 (corresponding to the
take-up decision node in Figure 1). Households can take up an adjustable-rate HECM
with either a small (ai0 = A) or large (ai0 = AL) initial withdrawal, a fixed rate HECM
(ai0 = F), or they can choose not to take up a HECM at all (ai0 = N). For fixed-rate HECMs,
households necessarily make a full draw so we do not distinguish between small and
large initial withdrawals. Households that choose not to take up a HECM (ai0 = N) exit
the model.9 The type of HECM and, in the case of an adjustable-rate HECM, whether
the initial withdrawal was large or not, become state variables and therefore affect the
household’s later decisions. Hence, the set of feasible actions for HECM households is

A0 = {Adjustable Rate, Adjustable Rate (Large Draw), Fixed Rate, No HECM}

= {A, AL, F, N}.

As with the HECM model, the utility of the choices associated with HECM take-up are
functions of the state variables and are additively separable in the error term as

(4) U0(si0, ai0, ε i0) = u0(si0, ai0) + ε i0(ai0).

In this case the payoffs u0(si0, ai0) represent sums of current payoffs and discounted
continuation values determined by the HECM household model. As in the model above for
HECM households, we will assume that ε i0(ai0) follows type I extreme value distribution

9Although HECM counseling is valid for two years, 99% of households in our sample who took up HECMs
after counseling did so in the same year. Hence, to construct a parsimonious model of HECM take-up we
assume that households either take up in the same year or not at all.

12



which leads to choice probabilities of the following form:

σ0(si0, ai0) =


exp(u0(si0,ai0))

1+∑j∈{A,AL,F} exp(u0(si0,j)) ai0 ∈ {A, AL, F},
1

1+∑j∈{A,AL,F} exp(u0(si0,j)) ai0 = N.

Recall that Assumption 1 includes a conditional independence assumption that limits
the persistence of the unobservables (Rust, 1987). In practice, we further assume that
the error terms are independent across time and individuals and in particular, the errors
ε i0 in the take-up choices (4) are independent from the error terms ε it corresponding to
subsequent HECM choices. Although this greatly simplifies the dynamic problem faced
by HECM households, which can be separately studied from the HECM take-up choices,
it is nonetheless a limitation of our analysis.10

In the next section, we show that in models such as ours, with multiple terminating
actions and a finite horizon, both the utility function and the discount factor are semipara-
metrically identified without a utility normalization. Furthermore, we show that although
welfare (actual and counterfactual) and counterfactual CCPs are not identified in general,
all of these quantities are identified in our model. We then propose an estimator for the
model, which is a multi-step plug-in semiparametric procedure based on BCNP.

3. Semiparametric Identification and Estimation

In this section we briefly describe our semiparametric identification results followed by
the semiparametric estimator we use. Following most of the literature on identification of
dynamic discrete choice models under Assumption 1, we first note that by Hotz and Miller
(1993) one can identify differences in conditional value functions. To identify the discount
factor and then the utility function itself we exploit the structure of our model, with
multiple terminating actions as in (2). An example of this structure from labor economics
would be an employee who can either quit immediately (immediate termination) or be
fired by failing to meet performance criteria for multiple periods in a row (repeated
termination). In addition, we require two more assumptions: completeness of a particular
conditional transition distribution and nonstationarity of the CCPs (Assumptions 2 and 3

in the Appendix). See Appendix A for a complete derivation of our identification results
and Appendix B for the proofs.

10In a reduced-form model, Moulton et al. (2015) allowed the unobservables that determine HECM take-up
and default to be correlated. They estimated the correlation between the HECM take-up and default to be
−0.38, so there is moderate evidence of negative correlation. Unfortunately, it would be computationally
prohibitive at present to allow serial correlation in unobservables in our dynamic structural, which has many
continuous state variables (Blevins, 2016).
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It is known in the literature that if there is a sequence of choices which makes the
future value not dependent on the initial choice, the expected payoff can be represented as
a sum of per-period utilities and CCPs for certain time periods, and CCP-based estimators
can be used (Arcidiacono and Miller, 2011). Our model builds on this framework. To
identify the utility functions without normalization, we observe that with two sequences
of choices that can terminate the decision problem and a completeness assumption, each
component in the sum of per-period utilities can be identified, rather than the difference
relative to a choice.

The identification of the discount factor relies on nonstationary conditional choice
probabilities, which has been recognized in the literature (Bajari et al., 2016). In finite-
horizon models such as ours, the CCPs are nonstationary, which means that if we fix the
current states, the CCPs across two periods can still be different, and the variation comes
only from the continuation value which is a product of the discount factor and a future
value term that can be shown to be identified from the data. The discount factor, being the
only term unknown, is then identified.

Estimation proceeds in multiple steps using a plug-in semiparametric approach. The
procedure is based on BCNP, but with some modifications since we do not assume
one of the choice-specific payoff functions is known nor do we need to observe the
final decision period. In the first step, as in BCNP, we nonparametrically estimate the
conditional choice probabilities. Specifically, returning to our empirical model with choice
set A = {C, R, D, T}, we use a series representation of the log odds ratio

log
σt(s, a−1, a)
σt(s, a−1, T)

=
∞

∑
l=1

rl(t, a)ql(s, a−1) ≈
L

∑
l=1

rl(t, a)ql(s, a−1)

for choices a ∈ A relative to termination (a = T). The functions {ql(·)}∞
l=1 are basis

functions and {rl(·)}∞
l=1 are the coefficients which will be estimated. The conditional

choice probabilities depend on the time period in order to capture nonstationary choice
behaviors in finite horizon models.

In practice we use a Hermite polynomial sieve as the basis functions because it can
approximate multivariate smooth functions of variables with unbounded supports well
(Chen, 2007). ql(s, a−1) is a vector from the tensor products of Hermite polynomials of
the state variables. We approximate the infinite sum using a finite number of Hermite
polynomials of the continuous state variables and interactions among them and with the
discrete state variables, and L denotes the highest degree of the polynomials which is
selected by 10-fold cross-validation. The sample is randomly partitioned into 10 groups.
For each of the 10 groups (testing dataset), we first estimate the parameters in a candidate
model leaving this group out and then obtain the log likelihood of the model using the
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testing dataset. The pool of candidate models includes Hermite polynomials up to degree
3. The model with the highest average log likelihood on the testing datasets is selected.
We also select the model using Hermite polynomials up to degree 4, and the results are
similar.

Let σ̂t(s, a−1, a) denote the estimated choice probabilities, obtained as

(5) σ̂t(s, a−1, a) =
exp

(
∑L

l=1 r̂l(t, a)ql(s, a−1)
)

1 + ∑j∈A\{T} exp
(

∑L
l=1 r̂l(t, j)ql(s, a−1)

)
for a ∈ A \ {T} and

σ̂t(s, a−1, T) = 1− σ̂t(s, a−1, C)− σ̂t(s, a−1, R)− σ̂t(s, a−1, D).

We nonparametrically estimate the take-up probabilities for t = 0 in a similar fashion.
As in BCNP, next we must nonparametrically estimate the period-ahead expected

ex-ante value function. We assume that the choice-specific errors follow type I extreme
value distributions. It follows that the period-ahead expected ex-ante value function is
identified directly from the data through the relationship:

(6) E[Vt+1(s′, a) | s, a] = −E[log σt+1(s′, a, T) | s, a] + E[u(s′, T) | s, a] + γ.

The first conditional expectation on the right hand side can be estimated using a nonpara-
metric regression of log σ̂t+1(s′, a, T) on s and a as in BCNP, where the choice probabilities
σ̂t+1(s′, a, T) are estimated in the previous step (5). The advantage of estimating this
conditional expectation term using nonparametric regression compared with alternative
approaches such as forward simulation is its computational simplicity. We implement
this by method of sieves using Hermite polynomials with the number of basis functions
selected by cross validation, Ê[log σ̂t+1(s′, a, T) | s, a] = ∑L̃

l=1 r̃l(t)ql(s, a). Meanwhile, γ

is a known constant. Because we do not assume that the termination utility function
is the zero function there is an additional term on the right hand side of (6) relative
to BCNP. In their case, the second term on the right hand side of (6) vanishes. This
additional term is also a function of s and a and can be estimated given the paramet-
ric form for the utility function and the estimated law of motion of the state variables,
E[u(s′, T) | s, a] =

∫
u(s′, T) fs′|s,a(ds′).

Although, our procedure involves this additional step of estimating the state transition
distribution, it is not new and is part of the first step in other multi-step estimators such as
Aguirregabiria and Mira (2002, 2007), Bajari, Benkard, and Levin (2007), and Pesendorfer
and Schmidt-Dengler (2007). One could avoid this step by assuming that the termination
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payoff is the zero function, however, if that assumption was incorrect the estimates would
be biased. In our empirical setting, we hypothesized that the payoff to termination would
be different based on demographics and household finances and our estimates indeed
support that view.

Finally, we estimate the structural parameters via nonlinear least squares. This includes
the utility parameters θ and β which is a product of the discount factor and the survival
probability. The estimating equations are the log odds ratios for the choices a ∈ A:

log
σt(s, a−1, a)
σt(s, a−1, T)

=u(s, a; θ)− u(s, T; θ) + β E
[
Vt+1(s′, a) | s, a

]
=u(s, a; θ)− u(s, T; θ)

− β E[log σt+1(s′, a, T) | s, a] + β E[u(s′, T; θ) | s, a] + βγ.

for a ∈ {C, R, D}. Substituting in estimated quantities from the first step yields

log
σ̂t(s, a−1, a)
σ̂t(s, a−1, T)

=u(s, a; θ)− u(s, T; θ)

− β
L̃

∑
l=1

r̃l(t)ql(s, a) + β
∫

u(s′, T; θ) fs′|s,a(ds′) + βγ.

This allows us to estimate the structural parameters θ and β by nonlinear least squares.
This procedure defines a semiparametric plug-in estimator of the kind considered by Ai

and Chen (2003). The first step is a series estimator for the conditional choice probabilities
for which consistency and a n1/4 rate of convergence follow from Wong and Shen (1995),
Andrews (1991), and Newey (1997). BCNP provide regularity conditions to establish these
properties for the first step estimator, which is the same estimator we use, as well as a proof
of asymptotic normality of a closely-related second step estimator. Asymptotic normality
of our second-step estimator follows as a straightforward modification of their conditions.

Furthermore, in our application we assume that the period utility for each choice a
is linear in the state variables s with coefficients θa: u(s, a; θ) = s′θa. Identification of
θ in this case was established in Lemma 2. We also parameterize the state transition
rule by assuming that stochastic time varying components of s follow a first order VAR
process. The state transition rules are estimated by fitting a system of seemingly unrelated
regressions using data on s′, s and a, thus allowing for contemporaneous correlations
between errors associated with the time varying stochastic state variables. The estimating
equations are now simplified to:

log
σ̂t(s, a−1, a)
σ̂t(s, a−1, T)

= s′θa − s′θT − β
L̃

∑
l=1

r̃l(t)ql(s, a) + βÊ
[
s′ | s, a

]′
θT + βγ,
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for a ∈ {C, R, D}.

4. Data

Our data is drawn from a sample of 20,239 senior households counseled for a reverse
mortgage during the years 2007 to 2011, from a single HUD counseling agency. These
data include demographic and socio-economic characteristics of the counseled household,
as well as credit data at the time of counseling and annually thereafter for at least three
years post counseling. Our entire sample spans the years 2007–2014. The credit attributes
data includes credit score, outstanding balances and payment histories on revolving
and installment debts, and public records information. For those originating a HECM
(58.42 percent of counseled households in our sample), counseling data is linked to HUD
HECM loan data using confidential personal identifiers. HUD HECM loan data includes
information on origination, withdrawals, terminations and tax and insurance defaults.

Our rich dataset allows us to include many state variables in the dynamic discrete
choice model that help capture household demographics and financial well-being as well
as the economic conditions they face. Household characteristics and the economic climate
in turn inform the decisions households make. Although some state variables are fixed
over time, many key variables such as the credit score are time-varying.

To control for differences in household demographics, we include age and age squared
as state variables along with indicator variables for young borrowers (less than 65 years
old), Hispanic and black borrowers, as well as single male and single female borrowers.
Additionally, we include many measures of household financial health as state variables.
We observe borrowers’ credit data annually which allows us to follow the evolution
of the credit score, total available revolving credit, and the balances of any revolving
and installment credit lines. Each year we also observe several variables related to the
borrowers’ HECMs including the HECM balance (principal plus accumulated interest)
and the balance on defaulted tax and insurance (T&I) payments. Additionally, we observe
the value of the property at closing, its zipcode, and the evolution of the housing price
index,11 allowing us to forecast the value of the home over time. From this we calculate
borrowers’ net equity and two variables we will refer to as “HECM credit” and “excess
credit”. These variables are further defined below. The remaining financial variables are
observed at the time of HECM counseling and are time-invariant. These include monthly
income, non-housing assets, and the property tax to income ratio. We also include indicator
variables for households with fixed-rate HECMs and households who took large initial

11We use the Federal Housing Finance Agency MSA level all-transactions house price index. For households
located outside a MSA, we use the state housing price index. These indices are deflated by the consumer price
index (CPI).
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withdrawals (80% or more).
In the following are several of the financial variables that deserve special attention.

These variables are similar in what they measure, but they move over time in distinct ways
that allow us to study whether and how households value various features of an HECM
loan.

HECM Balance The current HECM balance is calculated based on the amounts a borrower
withdraws over time. This balance grows at a rate equal to the interest rate plus a monthly
mortgage insurance premium. For FRM borrowers, the entire line of credit is drawn at
closing, and so no additional withdrawals can be made. ARM borrowers can choose their
initial withdrawal amount and may make subsequent withdraws, as needed or on an
installment basis12.

Net Equity Net equity is defined to be the current value of the home less the current HECM
balance. For example, the net equity for a household with a home valued at $200,000 and
with a HECM balance of $70,000 would be $130,000. A ceteris paribus increase in net equity
represents the effect of home equity increasing, controlling for the amount of HECM credit
that can still be accessed and the insurance value of the HECM (excess credit). To allow for
asymmetric effects of positive and negative net equity, we also include the absolute value
of negative net equity as a state variable. This variable is positive only when a household
has negative net equity; it is defined to be zero when a household has positive equity.

HECM Credit The current available HECM credit is the amount of money that a borrower
can withdraw from HECM line of credit after adjusting for past withdrawals and credit
line growth. This variable is zero for FRM borrowers after the first year because FRM
HECMs are structured as closed-end mortgages and borrowers are not permitted to make
any additional withdrawals after closing. For ARM borrowers, like the HECM balance,
this amount also grows at a rate equal to the interest rate plus the mortgage insurance
premium. A ceteris paribus increase in HECM credit represents the immediate liquidity
that can be extracted from the HECM, which is independent of the home value.

Excess Credit We define excess credit to be the difference between the available HECM
credit and the current home value when this quantity is positive, or $0 otherwise. In other
words, we say a household has excess credit when the available HECM credit exceeds
the value of the home. For example, for a household with $170,000 in available HECM

12ARM borrowers have more disbursement options, including a lump-sum payment, a tenure payment (a
fixed monthly payment for as long as the borrower lives in the home and satisfies other loan obligations), a
term payment (a fixed monthly payment for a fixed number of periods) or a line of credit.
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credit and a home valued at $160,000 the excess credit would be $10,000. If the home
were instead valued at $180,000, excess credit would be $0 since the home value exceeds
the available credit. For most households in our sample, excess credit is $0. Due to the
non-recourse nature of the loan, when excess credit is positive it represents the amount of
money the household could save by drawing all funds before terminating the HECM.

To illustrate these three variables, we consider two example households with homes
originally valued at $200,000 and with identical HECMs. Both households had initial
principal limits of $120,000 and initial withdrawals equal to $70,000. Suppose the first
household’s home value has held steady at $200,000 but the second household’s home has
significantly fallen in value to $110,000. For simplicity, suppose that the decline happens
immediately after closing so that we can abstract away from growth in the HECM balance
and HECM credit. For comparison, the values of the net equity, HECM credit, and excess
credit variables for these two households are shown in Table 1.

Clearly, net equity is higher for the first household. Since the HECMs and withdrawals
are identical, the available HECM credit is the same for both households. However, excess
credit is only non-zero for the second household, which has borrowing power (HECM
credit) in excess of net equity.

Table 1. Example Households: Net Equity, HECM Credit, and Excess Credit

Variable Household 1 Household 2

Original Home Value $200,000 $200,000

Current Home Value $200,000 $110,000

HECM Credit Limit $120,000 $120,000

HECM Balance $70,000 $70,000

Net Equity $130,000 $40,000

HECM Credit $50,000 $50,000

Excess Credit $0 $10,000

An existing HECM can be refinanced into another HECM. The borrower can increase
the amount of borrowing from the new HECM if the interest rate, property value, or
the principal limit factor as set forth by HUD moves in its favor13. To capture these
factors, we have included net equity in the state variables, which should capture the
effect of home price movements (“cash-out refi” motives). To further capture “rate refi”
motives, for each HECM household and each year in our sample, we compute the refinance
benefit, as ∆IPLrefi,it = IPLrefi,it −HECM Credit Limitit, where IPLrefi,it is the estimated

13A borrower may choose to refinance due to other reasons such as adding a second borrower to the loan.
HUD defines HECM refinance as “a HECM refinance case is the refinance of an existing HECM with a new
HECM for the same borrower and same property with different loan specifications.” These household specific
factors are modeled by choice specific random shocks in our model.
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initial principal limit should household i refinances in year t, and its formula is

IPLrefi,it = principal limit factorit ×min{est. home valueit, FHA loan limitit}.

HUD provides a principal limit factor table which shows the value of the factor for each
combination of borrower age and interest rate. During our sample period, the table was
revised in 2009, 2010, 2013 and 2014. The FHA loan limit has also been revised from time
to time and this has been taken into account. For fixed rate borrowers, we also compute
the interest rate differential which is the difference between the loan rate and current best
market rate14.

Table 2 reports the summary statistics for our HECM sample. The reported means
and standard deviations are at the household-year level, meaning that there are multiple
observations for each household for each year until the HECM terminates. The first four
columns report the mean for each variable conditional on the current household action
ait. The last column reports the overall mean and standard deviation for each variable.
Recall that households are counted in these statistics for multiple years until termination,
which explains why the default action (which can be repeated) is observed much more
often than termination (which is immediate).

Comparing across actions, we see relatively few refinance and termination actions
relative to default, in part because those households leave the sample while households
who default can remain in the sample for multiple years (and they tend to remain in
default). Around 40% of our observations are for single female households, 14% are
black, and 8% are Hispanic. Average monthly income at time of origination is $2,380.
Approximately 56% of observations are for FRMs and 70% of observations correspond to
borrowers who took large initial withdrawals. The overall mean age of HECM borrowers
across observations in our sample is 73 years. Borrowers who refinance tend to be slightly
younger, on average around 72 years old, while the mean age at termination is 76.

For household-year observations where we observe a default, households are more
likely to have taken large initial withdrawals and have fixed rate HECMs. They also have
lower incomes, lower credit scores, little available credit (HECM and other credit), lower
net equity, higher excess credit, and have T&I default balances. The average credit score is
701, however, for borrowers who default it is 590. For refinance observations and to a less
extent termination observations, households tend to have higher net equity, more available
revolving credit, higher income, and higher property tax/income ratios.

Similarly, Table 3 reports the summary statistics for variables observed in the year of
counseling for our take-up sample. Over half of the counseled borrowers do ultimately

14We compute average interest rates by state and year from the full HECM loan dataset for adjustable and
fixed rate HECMs, and the interest rate used is the lower of the two.

20



Table 2. Summary Statistics for the HECM Sample

Terminate Refinance Default Continue All Loans
Mean Mean Mean Mean Mean SD

Time-Invariant Variables
Young borrower 0.113 0.168 0.216 0.148 0.151 0.358

Hispanic 0.082 0.074 0.123 0.081 0.084 0.278

Black 0.059 0.174 0.268 0.131 0.139 0.346

Single male 0.200 0.215 0.187 0.150 0.156 0.363

Single female 0.406 0.383 0.479 0.393 0.400 0.490

Monthly income †
0.262 0.246 0.194 0.241 0.238 0.164

Property tax/income 0.106 0.114 0.104 0.091 0.093 0.095

Non-housing assets†
6.264 2.152 2.734 4.545 4.464 17.618

Fixed rate HECM 0.524 0.523 0.674 0.557 0.564 0.496

Initial withdrawal > 80% 0.604 0.718 0.890 0.682 0.695 0.461

# of borrowers 609
‡

149
?

996
∗

11,167
�

12,906

Time-Varying Variables
Age 75.693 72.188 72.856 72.979 73.009 7.561

Credit score 718.187 701.168 590.326 705.896 701.317 93.633

Available revolving credit†
2.328 3.131 0.313 2.250 2.175 3.040

Revolving & installment debt†
1.108 1.200 0.931 1.265 1.249 2.242

Net equity†
13.521 16.345 4.197 10.750 10.540 13.163

Negative net equity†
0.010 0.000 0.213 0.056 0.061 0.610

Excess credit†
0.032 0.000 0.182 0.072 0.076 0.506

Tax & insurance balance†
0.003 0.003 0.162 0.000 0.007 0.090

Available HECM credit†
3.003 3.156 0.130 3.164 3.037 6.109

Refinance benefit†
0.811 1.394 0.053 0.426 0.419 1.875

Interest rate differential 0.112 0.091 0.135 0.102 0.103 0.192

# of borrower-year observations 609 149 1,778 40,862 43,398

† Monetary variables are measured in units of $10,000. ‡ Borrowers who terminated their HECMs in the sample. ? Borrowers who refinanced at least once
in the sample. ∗ Borrowers who defaulted at least once in the sample. � Borrowers who did not terminate, refinance, nor default in the sample.
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Table 3. Summary Statistics for the Take-Up Sample

FRM ARM (≤ 80%) ARM (> 80%) No HECM All HH. in Sample Senior HH.?

Mean Mean Mean Mean Mean SD Mean SD
Pre-HECM Variables
Age 70.962 74.142 72.243 70.758 71.511 7.975 70.132 9.223

Young borrower 0.188 0.114 0.131 0.177 0.167 0.373 0.170 0.376

Hispanic 0.065 0.069 0.180 0.100 0.088 0.284 0.043 0.203

Black 0.148 0.079 0.204 0.229 0.174 0.379 0.066 0.249

Single male 0.160 0.150 0.168 0.188 0.170 0.376 0.114 0.318

Single female 0.385 0.450 0.400 0.374 0.393 0.488 0.310 0.462

Monthly income †
0.247 0.221 0.213 0.232 0.234 0.168 0.407 0.316

Property tax/income 0.078 0.118 0.106 0.085 0.090 0.094

Non-housing assets†
4.507 4.392 2.158 4.492 4.313 17.252 28.373 43,522

Credit score 684.735 726.315 671.323 659.184 680.240 101.496

Available revolving credit†
2.104 3.216 2.597 1.804 2.204 3.587

Revolving & installment debt†
1.721 1.288 1.651 1.595 1.590 2.939

Net equity†
14.952 23.397 15.882 16.557 17.125 21.496 15.649 17.978

Negative net equity†
0.047 0.021 0.014 0.304 0.147 2.122 0.252 4.435

1 year change in house price index -0.055 -0.064 -0.083 -0.064 -0.062 0.054

Average interest rate (ARM) 5.256 5.315 5.383 5.262 5.278 0.186

Average interest rate (FRM)‡
5.280 5.303 5.355 5.277 5.284 0.209

Initial HECM Variables
Initial withdrawal > 80% 0.987 0.000 1.000 – – –
Initial principal limit†

12.670 15.772 14.253 – – –
# of households 6,927 3,450 1,446 8,416 20,239

† Monetary variables are measured in units of $10,000. ‡ Fixed rate HECMs became widely available after April 2009. Therefore average interest rates of
fixed rate HECMs are based on observations after April 2009. ? Homeowning households with a member age 62 or greater from the 2010 wave of the
Health and Retirement Study.
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take up a HECM. Those that do take up a HECM tend to be older and in our sample, more
households choose FRMs than ARMs. Households that choose small-draw ARMs have
the highest average credit scores and those that choose large-draw ARMs have the lowest
credit scores. Households with fewer non-housing assets tend to choose large-draw ARMs
in particular. Lower income households tend to choose ARMs somewhat more often than
FRMs.

To gauge to what extent our counseled sample differs from the general population
of seniors, we compare our sample with observations from the 2010 wave of the Health
and Retirement Study (HRS) who are homeowners with a household member at least
62 years of age. The last two columns of Table 3 report summary statistics of variables
that are also available in the HRS data. Compared with the general senior population,
households in our counseled sample are slightly older, more likely to come from minority
racial groups, more likely to be single, have lower levels of income and non-housing assets,
but a higher level of net equity. These observations are in line with the analysis of the
characteristics of reverse mortgage borrowers by Davidoff (2014) and Haurin, Moulton, and
Shi (2018). As such, our estimates below should be interpreted in terms of the preferences
of HECM borrowers only. The socio-economic conditions that drive HECM counseling
and take-up decisions may also affect subsequent HECM choices, so our estimates may
not be representative of preferences in the overall population of seniors.

5. Estimation Results and Counterfactual Analysis

5.1. Reduced Form Policy Function Estimates

The conditional choice probabilities are estimated by a sieve multinomial logit model using
the HECM borrower sample and all of the state variables from the structural model, which
include variables in the per-period payoffs and time lags of macroeconomic variables that
affect borrowers’ expectations on future state variables such as local house price indices
and average interest rates of adjustable and fixed-rate mortgages. For finite time horizon
models such as ours, decision rules are likely nonstationary, and therefore we estimate
the model separately for each HECM loan age (years since loan origination). The basis
functions are Hermite polynomial sieves, and the order is selected by cross-validation as
discussed in Section 3.

The non-stationarity assumption (Assumption 3 in Appendix A) is also supported in
the reverse mortgage data. To test this, we fit a sieve multinomial logit model which is
restricted to have same coefficients across different years from loan origination except for
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indicator variables for each loan age:

(7) log
σt(s, a−1, a)
σt(s, a−1, T)

= x(s, a−1)
′θa +

4

∑
s=2

1(s = t)θs,a.

x(s, a−1) has the same set of variables as the one used in the first step conditional choice
probability estimation in the paper. θs,a can be interpreted as differences in the log odds
ratio of choice a relative to the choice of termination between year s and year 1.

If there are 3 periods of data, t, t + 1, t + 2, such that θt+1,a and θt+2,a are significantly
different for some a, Assumption 3 will be satisfied. Note that because (7) is a special case
of models with more flexible specifications of time effects, the rejection of the hypothesis
that the time effects are equal in (7) implies that the time effects are also not equal and that
the conditional choice probabilities are not stationary for the more general model. Table 4

reports the estimates for θt+2,a − θt+1,a. Indeed, the differences are significant at the 5%
level for the default choice for loan ages 2 vs. 1 and 3 vs. 2 and for the continue choice for
loan ages 2 vs. 1 and 3 vs. 4. Wald tests on the joint equality of the time effects for the
choices of continue, refinance, and default also reject the null hypothesis of stationarity.
Therefore Assumption 3 is satisfied for both t = 1, 2, 3 and t = 2, 3, 4.15

Table 4. Non-stationarity of Choice Probabilities

Loan Age 2 vs. 1 Loan Age 3 vs. 2 Loan Age 4 vs. 3

Continue/Terminate −0.622∗∗∗ 0.145 0.348∗∗∗

(0.160) (0.112) (0.131)
Refinance/Terminate 0.434 −0.310 −0.395

(0.327) (0.270) (0.331)
Default/Terminate 0.666∗∗∗ 0.307∗∗ 0.193

(0.235) (0.142) (0.158)
Joint tests Z statistic 82.42 8.43 15.25

p-value 0.0000 0.0379 0.0016
This table reports tests on the equality of coefficients. In the upper panel, reported are differences between
coefficients of pairs of loan age indicators for each choice in the sieve multinomial logit model. In parentheses
are standard errors, which are computed based on the estimated variance-covariance matrix of the coefficients.
Other variables are the same as the ones used in the first step conditional choice probability estimation. In the
lower panel, Wald tests on the joint equality of pairs of loan age indicators for the choices of continue,
refinance, and default are performed. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5 reports the within-sample fit of the HECM policy function estimates. The
average predicted choice probabilities are compared with the data using the full sample,
as well as sub-samples as defined by HECM characteristics and some key borrower

15We use observations with loan ages 2, 3 and 4 in the estimation for the discount factor, because there is
more variation in observed choices in year 2 than in year 1.

24



state variables. Although these are non-targeted moments (i.e., we estimate the model
using maximum likelihood rather than GMM based these moments), the predicted choice
probabilities still capture the overall patterns in the data well. To further evaluate the
fit of the model, we randomly divide the sample into two halves where the first half is
used as a training sample to estimate the model parameters, and the model predictions
are compared with the actual choices for observations in the second half sample. These
results are reported in Table 12 in Appendix C, where we see that the model also has good
out-of-sample prediction power.

In addition, we also use a sieve multinomial logit model to estimate the conditional
choice probabilities for HECM take-up using the counseled sample. Starting in April
2009, both fixed rate and adjustable rate HECMs are available. Households who choose
the fixed rate HECM receive the HECM proceeds as a lump sum, while adjustable rate
HECM borrowers can select between different payment plans including a line of credit,
tenure, term, and combinations thereof. Large upfront HECM credit utilization has been
recognized as a significant risk factor for default, and we model that adjustable rate HECM
borrowers are making a choice on whether they make large upfront draws. Large draw is
defined as initial HECM credit utilization exceeding 80% of the credit limit. Because fixed
rate HECMs were not available before April 2009, the available choices for households
counseled before that date are not taking up an HECM, adjustable rate HECM with large
upfront draw, and adjustable rate HECM with small upfront draw. Table 6 reports the
within sample fit of the HECM take-up policy function estimates and shows that the
estimated policy functions fit the data distribution well16.

5.2. Structural Utility Function Estimates

The total value for a household consists of a choice-specific period utility, a continuation
value conditional on the state variables and choice taken this period, and an i.i.d. type I
extreme value error. Table 7 contains estimates of the per-period, choice-specific utility
coefficients along with 95% bias-corrected bootstrap confidence intervals. The utility
coefficients of the choices of continue, refinance and default are relative to those in the
termination. Section 3 shows that observing two terminating actions allows us to identify
the utility coefficients for every choice, rather than only the difference relative to some
reference choice. Therefore in Table 7, the per-period utility coefficients of termination also
vary with state variables. For the continue, refinance, and default decisions the reported
estimates are differences in the coefficients relative to termination. In other words, the
termination coefficients are levels while the continue, refinance, and default are differences.

16For simplicity, this table reports estimates only for the observations after April 1, 2009, when all HECM
products became available.
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Table 5. In-Sample Fit of Reduced Form HECM Policy Function Estimates

Termination Refinance Default
Sample Prediction Data Prediction Data Prediction Data

Unconditional
All 1.43% 1.40% 0.37% 0.34% 4.09% 4.10%

By HECM Type
Fixed Rate 1.27% 1.26% 0.33% 0.31% 4.79% 4.76%
Adjustable Rate 1.66% 1.61% 0.44% 0.39% 3.10% 3.15%

By Loan Age
1 0.68% 0.67% 0.29% 0.29% 0.44% 0.44%
2 1.77% 1.75% 0.47% 0.47% 3.24% 3.25%
3 1.94% 1.87% 0.39% 0.35% 5.91% 5.92%
4 1.34% 1.33% 0.30% 0.23% 7.76% 7.77%

By Credit Score
Q1 1.08% 0.99% 0.39% 0.36% 11.86% 12.09%
Q2 1.37% 1.32% 0.36% 0.33% 3.19% 3.29%
Q3 1.53% 1.63% 0.39% 0.39% 0.82% 0.69%
Q4 1.71% 1.67% 0.36% 0.30% 0.44% 0.26%

By Net Equity
Q1 1.15% 1.03% 0.16% 0.16% 8.69% 8.68%
Q2 1.39% 1.35% 0.31% 0.20% 4.66% 4.67%
Q3 1.46% 1.67% 0.41% 0.46% 2.22% 2.20%
Q4 1.69% 1.56% 0.57% 0.55% 0.80% 0.83%

By Available HECM Credit
Q1 1.45% 1.41% 0.40% 0.36% 5.87% 5.88%
Q2 1.38% 1.34% 0.33% 0.39% 0.49% 0.46%
Q3 1.33% 1.49% 0.25% 0.15% 0.19% 0.22%
Q4 1.43% 1.36% 0.37% 0.39% 0.05% 0.02%

This table shows the within-sample fit of the policy function estimates, both unconditionally and conditional
on some explanatory variables. Q1–Q4 denote the first through fourth quartiles of the stated variables.
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Table 6. In-Sample Fit of Reduced Form HECM Take-Up Policy Function Estimates

FRM ARM, Small Draw ARM, Large Draw
Sample Prediction Data Prediction Data Prediction Data

Unconditional
All 37.95% 37.95% 15.28% 15.28% 2.86% 2.86%

By Year of Counseling
2009 36.12% 36.19% 14.86% 14.65% 6.29% 6.34%
2010 37.67% 37.65% 17.23% 17.37% 2.83% 2.80%
2011 38.71% 38.71% 13.30% 13.20% 2.01% 2.03%

By Age
Q1 39.62% 38.99% 9.85% 9.90% 2.47% 2.40%
Q2 40.12% 40.87% 12.06% 12.07% 2.66% 2.80%
Q3 38.44% 38.47% 16.72% 17.22% 2.92% 2.71%
Q4 33.06% 32.97% 23.42% 22.76% 3.46% 3.64%

By Income
Q1 33.98% 33.87% 15.00% 15.12% 2.55% 2.61%
Q2 36.87% 36.62% 16.59% 16.67% 2.69% 2.61%
Q3 39.08% 39.22% 15.61% 15.47% 2.92% 2.85%
Q4 41.87% 42.09% 13.91% 13.85% 3.28% 3.37%

By Credit Score
Q1 33.89% 33.59% 6.68% 6.94% 2.98% 2.85%
Q2 39.28% 39.72% 10.39% 10.00% 3.03% 3.24%
Q3 41.07% 41.27% 18.02% 17.69% 3.01% 2.90%
Q4 37.55% 37.21% 26.13% 26.59% 2.41% 2.45%

By Net Equity
Q1 38.14% 38.72% 3.48% 3.37% 2.37% 2.10%
Q2 43.66% 42.80% 10.98% 11.27% 2.84% 3.42%
Q3 39.69% 40.03% 19.34% 19.26% 3.09% 2.89%
Q4 30.26% 30.22% 27.36% 27.26% 3.14% 3.02%

This table shows the within-sample fit of the policy function estimates, both unconditionally and conditional
on some explanatory variables. Q1–Q4 denote the first through fourth quartiles of the stated variables. The
sample is restricted to households counseled after April 1, 2009.
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Table 7. Coefficient Estimates for Per-Period Payoffs

Continue Refinance Default Terminate
Constant 6.487 (-7.332, 28.711) -1.393 (-14.241, 23.637) 5.721 (-7.343, 28.684) -8.910 (-48.740 , 14.790)
Hispanic -0.073 (-2.164, 6.332) 0.096 (-2.032, 10.936) -0.055 (-2.747, 4.423) -0.276 (-7.906, 2.981)
Black -0.194 (-2.191, 2.304) 0.361 (-2.047, 3.378) -0.099 (-2.328, 2.702) 0.446 (-7.446, 3.056)
Single male -0.721 (-2.072, 1.599) 0.992

? (-0.255, 4.409) -0.697 (-2.236, 1.817) 0.709 (-3.112, 2.682)
Single female -1.210 (-2.673, 1.019) -1.451 (-2.972, 1.350) -1.334 (-2.766, 1.002) 1.364 (-1.884, 3.270)
Income† -6.354

?? (-15.418, -1.981) -7.759
?? (-17.825, -1.213) -7.915

?? (-18.736, -2.792) 7.216
?? (0.463, 18.435)

Property tax/income -10.778
? (-18.981, 0.377) -10.235

? (-23.170, 0.373) -10.287
? (-20.923, 1.488) 12.605 (-4.098, 24.710)

Non-housing assets† -0.006 (-0.069, 0.033) -0.027 (-0.131, 0.045) 0.003 (-0.051, 0.049) 0.009 (-0.051, 0.095)
Fixed rate HECM -0.931 (-3.930, 1.237) -0.163 (-3.844, 2.211) -0.157 (-2.620, 2.490) 1.145 (-2.016, 4.964)
First year credit utilization > 80% 2.435

? (-0.032, 5.846) 3.777
?? (1.289, 8.353 ) 3.683

?? (0.410, 7.046) -3.484
? (-8.193, 0.410)

Credit score -0.005 (-0.035, 0.012) -0.007 (-0.042, 0.011) -0.011 (-0.037, 0.005) 0.009 (-0.022, 0.064)
Available revolving credit†

0.368
?? (0.260, 0.807) 0.367

?? (0.294, 0.765 ) 0.079 (-0.066, 0.449) -0.622
?? (-1.925, -0.305)

Revolving & installment debt† -0.244 (-0.861, 0.224) -0.124 (-0.926, 0.383) -0.391 (-1.250, 0.189) 0.512 (-0.625, 1.971)
Net equity†

0.130
?? (0.045, 0.187) 0.189

?? (0.060, 0.310 ) 0.133
?? (0.040, 0.259) -0.182

?? (-0.284, -0.036)
Negative net equity†

1.036 (-2.222, 6.412) 0.379 (-1.250, 21.929) 0.882 (-252.412, 5.901) -0.063 (-0.324, 0.214)
Excess credit† -0.220 (-4.468, 1.767) -0.977 (-3.938, 1.076) -8.767 (-125.189, 3.239) -0.107 (-0.487, 0.077)
Available HECM credit†

0.011 (-0.047, 0.059) -0.103 (-0.288, 0.034) -0.298
?? (-0.404, -0.114) -0.081 (-0.162, 0.030)

Unpaid T&I balance -6.323 (-44.796, 188.837) -0.210 (-346.356, 5.948) -0.867 (-11.336, 2.451)
∆IPLrefi 0.145

?? (0.019, 0.628 )
Loan rate - current rate 0.357 (-3.366, 3.932)
Discount factor b 0.898

?? (0.707, 1.000)

The reported coefficients for the payoffs of continue, refinance and default are relative to those in the termination payoff. 95% bias-corrected bootstrap
confidence intervals in parentheses (1, 200 replications).
? significance at 10%. ?? significance at 5%. † Monetary variables are reported in units of $10,000.
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Table 8. Coefficient Estimates for Per-Period Payoffs, with Zero Restrictions on Termination Payoffs

Continue Refinance Default Terminate
Constant 0.239 (-1.456, 1.191) -8.151

?? (-13.395, -4.584) -0.775 (-5.822, 2.141) 0

Hispanic -0.158 (-0.496, 0.354) -0.542 (-1.910, 0.372) -0.270 (-1.839, 0.628) 0

Black 0.230 (-0.405, 0.592) 0.347 (-1.055, 1.137) 0.300 (-0.767, 0.728) 0

Single male 0.057 (-0.094, 0.609) 0.510 (-0.240, 1.760) 0.022 (-0.376, 0.477) 0

Single female 0.048 (-0.111, 0.327) 0.153 (-0.531, 1.194) -0.048 (-0.455, 0.565) 0

Income† -0.666 (-1.018, 0.094) -1.562 (-7.336, 2.843) -2.164
?? (-4.209, -0.810) 0

Property tax/income -0.569 (-1.413, 1.713) -0.313 (-4.483, 4.348) 0.205 (-3.358, 2.278) 0

Non-housing assets† -0.001 (-0.002, 0.002) -0.002 (-0.007, 0.012) 0.003 (-0.005, 0.010) 0

Fixed rate HECM 0.113 (-0.273, 0.465) -0.151 (-1.195, 0.779) 0.856
?? (0.185, 1.946) 0

First year credit utilization > 80% 0.250 (-0.141, 0.502) 1.238
?? (0.295, 2.108) 1.026 (-0.793, 1.905) 0

Credit score 0.000 (-0.001, 0.001) -0.001 (-0.005, 0.005) -0.005 (-0.008, 0.002) 0

Available revolving credit†
0.011 (-0.020, 0.039) 0.043 (-0.036, 0.136) -0.204

?? (-0.311, -0.101) 0

Revolving & installment debt†
0.037

?? (0.007, 0.060) 0.041 (-0.040, 0.107) -0.048 (-0.084, 0.027) 0

Net equity†
0.004 (-0.007, 0.011) 0.038

? (-0.001, 0.070) -0.029 (-0.055, 0.027) 0

Negative net equity†
0.846 (-2.295, 7.090) 0.283 (-1.436, 21.835) 0.520 (-246.963, 4.724) 0

Excess credit† -0.067 (-4.735, 1.771) -0.810 (-3.532, 1.342) -8.685 (-122.881, 3.767) 0

Available HECM credit†
0.044

?? (0.009, 0.063) 0.036 (-0.054, 0.095) -0.152
?? (-0.203, -0.051) 0

Unpaid T&I balance -6.583 (-41.179, 209.661) -0.325 (-360.621, 7.167) 0

∆IPLrefi 0.054 (-0.079, 0.107) 0

Loan rate - current rate 1.306 (-2.138, 2.933) 0

Discount factor b 0.898
?? (0.707, 1.000)

95% bias-corrected bootstrap confidence intervals in parentheses (1, 200 replications).
? significance at 10%. ?? significance at 5%. † Monetary variables are reported in units of $10,000.
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We do this to mirror the situation when termination is chosen as the baseline choice with
coefficients fixed at zero. To show that coefficient estimates depend on the normalization
restriction, Table 8 shows the results when the termination payoff is indeed restricted to be
zero everywhere.

The utility functions represent the per-period sum of benefits and losses of taking
actions on the HECM, as functions of the state variables. Because of heterogeneity,
households naturally have higher or lower utilities than others for each choice. For
borrowers who continue, default, or refinance, the utility function represents the net
current period benefits of taking each action. For a borrower who terminates the HECM,
the period utility for termination represents a one-time payoff since no utility is received in
future periods. The higher the termination value relative to the payoff from other choices,
the more likely that the HECM will be terminated.

At 5% significance level, borrowers who receive more value from termination are
those with higher income but lower net equity or unused revolving credit. At HECM
loan termination, the loan balance has to be repaid, which can be satisfied by selling
the home, a deed in lieu, a short sale, foreclosure, or using the personal funds of the
borrowers or their heirs. Although we do not have data on how HECMs are repaid,
anecdotal evidence indicates that the most common way of repayment is through selling
the home, and consistent consistent with this, borrowers with more net equity find it less
attractive to move out and have lower value from termination. At the same time, because
HECM credit limits do not change with declines in house prices, HECM borrowers are
insured against house price declines to the extent of their HECM credit limits, and the
insurance value is greater the more the home price drops below the HECM credit limit.
Borrowers with more unused revolving credit may have more financial resources to cope
with unexpected events such as increased medical spending, and are better able to stay in
their homes and age in place. Note that we include both net equity (the level, whether
positive or negative, say NEit) and negative net equity (the absolute value of the negative
part, NNEit) as state variables. Hence, the total effect of net equity on choice-specific
utility for a household is ρNENEit − 1{NEit < 0}ρNNE |NEit|. For households with positive
net equity, an increase in its value increases the period payoff of the choices of continue,
refinance and default relative to immediate termination, hence makes it more attractive to
continue with HECMs. At the same time, if net equity drops below zero, a further decrease
will increase the period payoff of continue and default relative to immediate termination.
Unlike forward mortgages, with no monthly payment on HECM loan balance, negative
equity does not make it more costly to continue with HECM loans. The variable of excess
credit measures the extent to which the home value drops below the HECM credit limit,
and its point estimate indicates that a higher excess credit decreases the period payoffs of
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default, and to a lesser extent, refinance and continue, relative to immediate termination.
However, because the number of observations with negative equity or nonzero excess
credit is rather limited, the estimates of the coefficients of negative net equity and excess
credit are quite noisy and are not statistically significant, indicating that there is no strong
evidence to support that the choice payoffs vary nonlinearly with home value as it crosses
the thresholds of HECM credit limit and loan balance, and therefore households may not
strategically terminate their HECM loans. Davidoff and Wetzel (2014) also conclude that
HECM borrowers do not behave strategically when HECMs terminate, as their HECM
credit utilization behavior do not vary when home values drop below HECM credit limits.

Borrowers with lower income or who have used more of their HECM credit lines receive
higher value from default relative to other choices, which means that if the continuation
value is fixed, these households are more likely to default this period. HECM borrowers
are more likely to refinance if doing so can increase the amount of borrowing. A higher
amount of unused revolving credit increases the period payoff of continue and refinance
relative to other choices, indicating that having access to additional financial resources are
complementary to continuing with the HECMs.

The utility estimates depend on the normalization used, as restricting the termination
payoff to zero significantly changes many coefficient estimates (Table 8). For example,
according to the unrestricted estimates (Table 7), higher net equity increases the period
payoff of default relative to termination and is significant at 5%, but with the restricted
model (Table 8), the coefficient becomes negative and insignificant. Therefore the structural
parameter estimates can be biased if the termination payoff is restricted to zero but in
reality it varies with the state variables.

In addition to the utility coefficients, we also estimate the discount factor β which is a
product of the factor of time discounting b and the survival probability. Our estimate for b
is 0.898 and is within the range of previous results in the literature on discount factors
for the elderly, which range from 0.67–0.90 (Trostel and Taylor, 2001; Harrison, Lau, and
Williams, 2002; Read and Read, 2004). Factoring in the survival probability, the effective
discount rate will be lower for older or single borrowers.

5.3. Ex-Ante Value Function Estimates

The ex-ante value function in (1) measures the expected discounted future value from
HECM loans for existing HECM borrowers, can be taken as a measure of the value
households place on the HECM program. Note that this does not include the one-time
payoff that arises from taking up the loan, such as paying off some other debt. To include
this, the HECM take up choice should be part of a household consumption, saving and
portfolio choice model such as (Nakajima and Telyukova, 2017), and is beyond the scope
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of our model and data. The ex-ante value function is nonlinear, but to summarize how
this value varies across households of different types, we report in Table 9 the results of a
linear regression of Vt(sit) on state variables. This allows us to examine how households’
valuations for the HECM loans vary with household and loan characteristics and economic
conditions.

At 5% significance level, the net benefits of HECMs are larger if the borrower has a
lower available revolving credit amount, a lower net equity amount or experiences a recent
house price decline in the borrower’s MSA. The ex-ante value is also larger for younger
borrowers, while there are no statistically significant nonlinear effects for borrowers who
just become eligible for HECMs (age between 62 and 64). If the adjustable rate HECM is
structured as a credit line, the unused portion of the credit line grows at the compounding
rate that depends on a market benchmark. Not surprisingly, the ex-ante value is higher
for a higher average interest rate for adjustable rate HECMs. Notice that a higher income
is associated with a higher ex-ante value with the effect significant at 10%. The utility
coefficient estimates indicate that at 5% significance level, a higher income increases
the payoff of termination, while decreases the period payoffs of the choices of continue,
refinance and default, and as a result of these opposite effects, the overall effect of income
on the ex-ante value is only weakly positively significant.

To provide some external validation of the welfare measure, Figure 2 shows that there is
a negative relationship between state average ex-ante values and consumer dissatisfaction
with reverse mortgages. Note that because the utility from termination is not restricted to
zero, the ex-ante value may be negative which arises when the expected present value from
the HECM loan is outweighed by the cost of termination. We compute average ex-ante
values for households in different states using the estimated model parameters. Consumer
dissatisfaction is measured by the number of complaints with reverse mortgages that have
been received by the Consumer Financial Protection Bureau17, divided by the number of
HECM loans in 2012. The solid line shows the fitted values from a linear regression18. Its
slope is −0.007 with p-value 0.026.

5.4. Welfare Implications of Borrower Eligibility Requirements

In our policy experiments we study the effects of imposing certain underwriting criteria
on borrower behavior and welfare. A significant program change in recent years is the
introduction of the financial assessment requirements effective April 27, 2015 which are
designed, among other things, to improve the financial position of the MMIF through
decreasing the rate of property tax & insurance defaults (Mortgagee Letter 2015-06).

17The first complaint in the database was received in December 1, 2011.
18Hawaii is excluded as its value is an outlier in the figure.
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Table 9. Regression of Ex-Ante Values on Borrower Characteristics

Dependent Variable Vt(sit, ait,−1)
Coeff. 95% CI

Hispanic -0.455 ( -12.464 , 2.828 )
Black 1.309 ( -11.306 , 3.900 )
Single male 0.354 ( -3.469 , 2.317 )
Single female 1.167 ( -2.081 , 3.147 )
Income†

6.306
? ( -0.497 , 17.229 )

Property tax/income 11.855 ( -4.985 , 23.864 )
Non-housing assets†

0.010 ( -0.050 , 0.096 )
Fixed rate HECM 1.393 ( -1.727 , 5.588 )
First year credit utilization > 80% -3.184

? ( -8.048 , 0.663 )
Credit score 0.008 ( -0.021 , 0.066 )
Available revolving credit† -0.624

?? ( -1.935 , -0.296 )
Revolving & installment debt†

0.524 ( -0.595 , 1.973 )
Net equity† -0.196

?? ( -0.296 , -0.056 )
Negative net equity†

0.300 ( -0.103 , 2.129 )
Excess credit†

0.032 ( -0.532 , 0.541 )
Available HECM credit† -0.049 ( -0.128 , 0.061 )
Unpaid T&I balance 1.329 ( -4.621 , 8.388 )
∆IPLrefi 0.000 ( -0.044 , 0.036 )
Young borrower 0.005 ( -0.516 , 0.538 )
Age -0.092

?? ( -0.149 , -0.025 )
Age2

0.000
?? ( 0.000 , 0.001 )

HPI change -3.551
?? ( -6.014 , -0.470 )

HPI change, 1 year lag -1.052 ( -3.476 , 2.336 )
HPI change, 2 year lag 2.197

? ( -0.517 , 3.947 )
Average interest rate (ARM) 0.705

?? ( 0.343 , 0.994 )
Average interest rate (FRM) -0.010 ( -0.189 , 0.165 )
Defaulted in T&I last year -0.223 ( -0.905 , 0.616 )
In default for two years 1.319

?? ( 0.412 , 6.173 )
Loan age
2 -0.769

?? ( -1.154 , -0.219 )
3 -0.515

? ( -0.980 , 0.023 )
4 -0.218 ( -0.855 , 0.319 )

The reported coefficients are for a linear regression of Vt(sit, ait,−1) on sit and other variables. Since Vt is not a
linear function, these estimates reflect average relationships rather than marginal effects. 95% bias-corrected
bootstrap confidence intervals in parentheses (1, 200 replications).
? significance at 10%. ?? significance at 5%. † Monetary variables are reported in units of $10,000.
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Figure 2. Average Ex-Ante Values and Borrower Satisfaction

Previous studies have examined the effects of imposing underwriting criteria on default
rates (Moulton et al., 2015), but the welfare cost of limiting program participation is not
yet fully understood.

Specifically, we simulate the effects of imposing borrower eligibility requirements
on credit scores, income and age. The results are summarized in Table 10. The first
column indicates the levels of the cutoff values for the credit requirement, initial income
requirement, and initial age requirement respectively. For example, under the initial credit
requirement of 490, borrowers whose credit scores are below 490 become ineligible for
HECMs. The statistics reported are based on our sample of HECM borrowers that are
still eligible for HECMs. The next three columns report the annual rates of termination,
refinance, and default decisions in the model, averaged over all households and all four
years of our sample. For both the credit and income requirements, the default rate
declines considerably. The average termination rate becomes slightly higher while the
average refinance rate is largely unaffected by the policies. Surprisingly, the initial income
requirement also significantly reduces the fraction of households with negative net equity
(fifth column) as well as the amount of their negative equity (sixth column, in $1 million
units), but the opposite happens for the initial age requirement.

The cost of these policies is, of course, a decline in HECM volume due to households
being excluded and a decrease in total borrower welfare. We report the total of the ex-ante
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values Vt(sit) over borrowers in the sample, averaged over the four years of our data, under
each scenario in the seventh column of Table 10 and the percentage change in this welfare
measure in the eighth column. The next two columns report the ex-ante values that are
obtained when we restrict the termination payoff to zero. The final two columns measure
the reduction in HECM volume (in number of households and the percentage changes)
due to these participation constraints. With a more stringent requirement on credit scores,
income or age, more households become ineligible for HECMs, and the average borrower
welfare as measured by the ex-ante value drops, as percentage decreases in ex-ante values
are greater than the decreases in HECM volumes.

Compared with the initial credit requirement, imposing an initial income requirement
would reduce the default rate less for a similar reduction in HECM volume, and its welfare
cost is greater. To see that the credit requirement is more effective, in terms of welfare,
at reducing defaults, we can compare the implications of a credit score requirement of
550—a threshold that excludes 10.81% households in our sample—with those of an income
requirement at 2 times the Federal Poverty Level. The baseline default rate before the
restrictions are imposed is 3.97%. The income requirement decreases this to 3.08% yet
it would exclude 43.38% of borrowers in our sample, thus reducing total ex ante value
from 87,718 to 40,033, a 54.36% reduction. In contrast, the credit requirement reduces the
default rate slightly more, to 2.94%, and it does so by excluding fewer borrowers, only
10.81%. Furthermore, the drop in ex ante value is also less, at 17.25%, so the welfare cost is
lower. Imposing an initial age requirement is even less effective in reducing defaults. On
the other hand, the income requirement is better in terms of reducing negative net equity.

The normalized ex-ante values which restrict termination payoffs to zero mask the
heterogeneous impacts of the borrower eligibility requirements in different regions. Figures
3 and 4 show how the initial credit (minimum credit score of 550) and income (2X federal
poverty line) requirements impact different regions differently in terms of the loss in
borrower welfare as measured by the ex-ante values. We report the relative changes
in the number of eligible loans, total ex-ante values, and total ex-ante values where
the termination utility is restricted to zero, for states where the sample has at least 30

observations. The predicted decreases in the normalized ex-ante values are similar to the
decreases in the number of eligible loans, while if the termination utility is not normalized,
states of Colorado and New York would experience much larger average percentage
decreases in ex-ante values, suggesting that borrowers in these two states would be hit the
hardest under the initial credit and income eligibility constraints.

Besides borrowers, lenders and the MMIF are also important participants in this market.
Abstracting away from investors in the market for HECM mortgage-backed securities,
HECM lenders earn interest income and origination fees on HECM loans. Aside from the
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Figure 3. Initial Credit Requirements
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Figure 4. Initial Income Requirements
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Table 10. Counterfactual Imposition of Borrower Eligibility Requirements

Termination Refinance Default Negative Equity Ex-Ante Value Ex-Ante Value HECM Volume
Excluding Termination

% % % % HH Total $1M Total %∆ Total %∆ # HH %∆
1.41% 0.34% 3.97% 2.36% -19.28 87,718 – 215,259 – 11,656 –

Initial credit requirement
490 1.43% 0.35% 3.63% 2.34% -18.63 83,335 -5.00% 207,559 -3.58% 11,355 -2.58%
520 1.44% 0.35% 3.36% 2.36% -18.26 78,452 -10.56% 198,872 -7.61% 10,978 -5.82%
550 1.45% 0.35% 2.94% 2.35% -17.25 72,589 -17.25% 187,104 -13.08% 10,396 -10.81%
580 1.47% 0.35% 2.54% 2.37% -15.63 64,950 -25.96% 174,016 -19.16% 9,825 -15.71%
610 1.50% 0.35% 2.14% 2.35% -13.89 57,275 -34.71% 160,430 -25.47% 9,165 -21.37%
Initial income requirement
1× FPL 1.42% 0.34% 3.69% 2.14% -16.21 76,300 -13.02% 197,496 -8.25% 10,769 -7.61%
1.25× FPL 1.43% 0.34% 3.51% 2.03% -14.28 67,695 -22.83% 180,625 -16.09% 9,897 -15.09%
1.5× FPL 1.44% 0.34% 3.33% 1.88% -11.73 56,209 -35.92% 157,634 -26.77% 8,729 -25.11%
1.75× FPL 1.46% 0.34% 3.20% 1.76% -9.47 47,134 -46.27% 136,493 -36.59% 7,609 -34.72%
2× FPL 1.47% 0.34% 3.08% 1.71% -8.15 40,033 -54.36% 117,816 -45.27% 6,600 -43.38%
Initial age requirement
No non-borrowing
spouse below 62 1.43% 0.34% 3.93% 2.37% -18.97 82,374 -6.09% 206,462 -4.09% 11,351 -2.62%
63 1.45% 0.34% 3.86% 2.42% -18.67 79,300 -9.60% 198,603 -7.74% 10,963 -5.95%
64 1.49% 0.34% 3.79% 2.56% -17.96 72,503 -17.35% 182,766 -15.09% 10,153 -12.89%
65 1.53% 0.33% 3.67% 2.70% -17.78 64,240 -26.77% 167,473 -22.20% 9,478 -18.69%
66 1.56% 0.33% 3.64% 2.80% -17.24 59,799 -31.83% 157,054 -27.04% 8,910 -23.56%
67 1.59% 0.33% 3.60% 2.86% -16.51 55,980 -36.18% 146,879 -31.77% 8,371 -28.18%

The baseline sample (11,656) is slightly smaller than the full sample because the sample is restricted to observations with credit scores available at HECM
loan closing. Initial income requirement is measured in terms of the Federal Poverty Level (FPL). Initial age requirement is based on the minimum age of
the borrower(s). Reported rates and valuations are four-year averages. Negative net equity values reported are the percentage of households with negative
equity (in any amount) and the total amount of household net equity, in $1 million units, for households with negative equity. Ex-ante value is the total
ex-ante value of all HECM households measured in utils. HECM volume is measured in terms of the number of counseled households who choose to
take-up a HECM in the baseline and are still eligible for HECMs with the eligibility requirement imposed.
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risk associated with the uncertainty on when the loan is terminated and paid off, lenders
may experience losses on loans that are terminated in adverse circumstances. Based on
the HECM loans purchased by Fannie Mae, Begley, Fout, LaCour-Little, and Mota (2019)
find that the average loss is 6% of the loan balance at the time of loan termination. For the
MMIF, it earns insurance premiums on active loans but may need to pay claims if the loan
balance exceeds the value of the home when the loan terminates. The policies considered
in Table 10 reduce the occurrence of adverse terminations but at the same time reduce the
loan volume.

Whether the lender and the MMIF find alternative policies advantageous depends
on the tradeoff between loan volumes and adverse terminations over the life of a loan.
Although this is beyond the scope of our model, we report in Table 11 the ratios of the
predicted relative changes in loan volumes and total ex-ante values over reductions in
default rates and the total amount of negative equity, for the policies considered in Table 10.
A lower ratio indicates a lower cost for a given improvement in loan performance. Table 11

shows that to reduce default rates, eligibility requirements based on credit scores are most
cost effective, while to decrease the severity of negative equity, income requirements are
most cost effective.

6. Conclusion

The contributions of this paper are twofold. We show that both the utility function and the
discount factor in a dynamic structural discrete choice model can be fully identified when
distinct terminating actions exist. With this result, welfare and counterfactual analysis
are more robust as there is no need to impose an ad hoc identifying assumption or
“normalization.” We then carry out an empirical analysis of the HECM program. Our
estimates quantify the effects of factors that influence major HECM decisions, including
refinance, default, and termination. Factors associated with higher HECM values include
having less access to revolving credit, a lower net equity amount, and younger age. We
show how various factors influence household welfare and illustrate the welfare cost of
policies that restrict program eligibility, with the aim of reducing defaults and adverse
terminations.
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A. Semiparametric Identification with Multiple Terminating Actions

In this section, we consider semiparametric identification and estimation of a finite-horizon
dynamic discrete choice model with multiple terminating actions. We show that the
presence of distinct terminating actions has substantial identifying power and leads
directly to identification of the entire utility function without the need to impose an ad
hoc “normalization”. The model is directly motivated by the empirical setting we consider,
where households may terminate directly or be forced to terminate by remaining in
default for three consecutive periods. To our knowledge, this paper is the first to consider
semiparametric identification of such models.

First we show that the main model primitives of interest—the period utility functions
and the discount factor—are identified from functions that are potentially observable in
the data. Potentially observable functions are those which can be consistently, nonparamet-
rically estimated in a first step and include the conditional choice probability function, the
laws of motion for the state variables, and certain other conditional expectations. Second,
we describe how we estimate the model following the semiparametric plug-in procedure
of BCNP, modified appropriately to account for features of our model.

Aguirregabiria (2005, 2010), Norets and Tang (2014), Arcidiacono and Miller (2015),
Chou (2016), and Kalouptsidi et al. (2016) all discuss identification of counterfactual
choice probabilities in dynamic discrete choice models such as ours. They emphasize that
arbitrarily normalizing one of the choice-specific utility functions to zero across all states
is not innocuous for analyzing counterfactuals. This is contrary to the common practice in
applied work, a practice we avoid in this paper. In this section, we characterize a class of
models in which semiparametric identification of the utility function is possible without
such a normalization.

Arcidiacono and Miller (2015) consider identification in the case of short panel data,
such as ours, where the sampling period ends before the model time horizon. They show
that the counterfactual CCPs for temporary policy changes involving only changes to
payoffs are identified even when the flow payoffs are not. They do not, however, consider
identification of the payoff function itself without a normalization. We show that this is
possible in cases with multiple terminating actions.

Chou (2016) demonstrates that normalizations affect counterfactual policy predictions
and shows that no normalization is needed if there are variables that affect the state
transition law but not the per period utilities. Our identification results effectively impose
a different form of exclusion restriction, based on the presence of multiple terminating
actions. One of the actions is repeated and may affect the available sequences of choices
but not current payoffs directly.
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Finally, we note that in models with continuous state variables alternative approaches
are possible. For example Taber (2000), considered the case where the distribution of
errors is instead left unspecified, under certain exclusion restrictions. In more recent
work, Buchholz, Shum, and Xu (2016) build on Srisuma and Linton (2012)’s framework
for continuous-state models to develop a single-index representation and a corresponding
closed-form semiparametric estimator for dynamic binary choice models with linear
utility functions and unspecified error distributions. Komarova et al. (2016) also consider
models with linear payoffs, but with a focus on identification of the discount factor, payoff
coefficients, and switching cost parameters when the distribution of errors is known.

A.1. Non-Identification in a Dynamic Binary Choice Model

To motivate our stated goal of avoiding an ad hoc location assumption or “normalization”
on the utility function, we first consider a simple dynamic binary response model. It is
known in the literature that Assumption 1 alone does not provide sufficient restrictions
to identify the structural primitives of the model (Rust, 1994). Magnac and Thesmar
(2002) show that to identify utility functions for each alternative, in addition to those in
Assumption 1, restrictions on the discount rate and the utility of a reference choice are also
needed. Before introducing the additional assumptions needed for our new identification
result, after defining some notation we first revisit this non-identification result since it
gives insights into the nature of the problem.

Let vt(s, a) denote the choice-specific value function for choice a,

vt(s, a) = u(s, a) + β E
[
Vt+1(s′) | s, a

]
.

As is well-known, the choice probabilities depend only on differences in the choice-specific
value function at particular states. For example, in the logistic case the choice probability
for a = 1 in state s is

σt(s, 1) =
exp(vt(s, 1)− vt(s, 0))

1 + exp(vt(s, 1)− vt(s, 0))
.

We will make use of Lemma 1 of Arcidiacono and Miller (2011), which extends results
of Hotz and Miller (1993) to establish that the ex-ante value function can be written
in terms of choice probabilities and the choice-specific value function for an arbitrary
reference choice a. When specialized to the case of type I extreme value errors, their result
is that for any state s and choice a,

(8) Vt(s) = vt(s, a)− log σt(s, a) + γ,
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where γ is Euler’s constant. Intuitively, this representation of the ex-ante value has three
components: the value from the reference choice (vt(s, a)), a non-negative adjustment
term (− log σt(s, a)) in case the reference choice is not optimal, and the mean of the type I
extreme value distribution (γ). Suppose that a = 1 is a terminating action after which the
agent receives no additional utility: vt(s, 1) = u(s, 1). Using termination as the reference
choice, we can express the ex-ante function simply in terms of within-period quantities:

(9) Vt(s) = u(s, 1)− log σt(s, 1) + γ.

Substituting (9) at period t + 1 into the definition of the choice-specific value function
for the continuation choice a = 0 yields

vt(s, 0) = u(s, 0) + β E
[
u(s′, 1)− log σt+1(s′, 1) | s, a = 0

]
+ βγ.

Differencing this function across choices (since this difference appears in the choice
probabilities) gives an expression involving three differences:

(10) vt(s, 0)− vt(s, 1) = [u(s, 0)− u(s, 1)] + β E[u(s′, 1) | s, a = 0]

− β E[log σt+1(s′, 1)− γ | s, a = 0]

This representation highlights two important points. First, following Rust (1994), we can
see that under the maintained assumptions the utility function is not identified, even when
the error distribution is known. We can construct an observationally equivalent utility
function ũ that yields the same difference vt(·, 0)− vt(·, 1) and therefore the same choice
probabilities.

Second, it is clear from (10) that the transition probabilities play an important role here.
If we were to assume—incorrectly—that u(·, 1) is a constant function (e.g., equal to zero),
then the second term is constant and the transition density does not interact with the utility
function. If in reality the termination payoff varies with the state variables, then using the
choice specific value function based on the incorrectly normalized utility function would
yield incorrect welfare measures. We summarize these points in the following lemma. The
proofs of this result and others are given in Appendix B.

Lemma 1. Under Assumption 1, neither the utility function, u, nor the ex-ante value function, Vt,
are identified.

On a positive note, for simple counterfactuals where ũ is an additive transformation of
u, the counterfactual choice probabilities are known to be identified even if u itself is only
identified up to differences (Aguirregabiria, 2010; Arcidiacono and Miller, 2015). Unfortu-
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nately, many interesting counterfactuals involve either affine or nonlinear transformations
of u or changes in the state transition density, in which cases the counterfactual choice
probabilities are not identified when u is only known up to differences (Kalouptsidi et al.,
2016).

A.2. Identification of the Utility Function

Here, we introduce a simple model in which to consider identification with multiple
terminating actions. Specifically, consider a three-choice model with one continuation
action (a = 0) and two terminating actions (a = 1 and a = 2). The first terminating
action (a = 1) results in immediate termination while the second (a = 2) must be chosen
twice consecutively to result in termination. The arguments can be extended readily to
models with more choices and with more complex terminating circumstances, such as our
empirical model. This simpler framework contains the essential elements needed for our
identification result and is motivated directly by the case of HECM households, which
can continue, terminate immediately, or be forced to terminate by defaulting for multiple
consecutive periods. An example of this structure from labor economics would be an
employee who can either quit immediately (immediate termination) or be fired by failing
to meet performance criteria for multiple periods in a row (repeated termination). Letting
a−1 denote the choice in the previous period, the choice-specific value function can be
expressed as follows:

(11) vt(s, a−1, a) =



u(s, 0) + β E[Vt+1(s′, 0) | s, a = 0] a = 0,

u(s, 1) a = 1,

u(s, 2) + β E[Vt+1(s′, 2) | s, a = 2] a−1 6= a = 2,

u(s, 2) a−1 = a = 2.

Remark. There is effectively a payoff exclusion restriction on a−1 in the representation above.
Although the lagged choice a−1 can affect payoffs by limiting the available sequences of
choices, it does not appear in the payoff function u directly. For example, having defaulted
in the last period does not affect period utility u conditional on current state s and action
a, but for a household already in default, choosing to default again will terminate the
model and no future payoffs will be received. Furthermore, because agents are forward
looking, they internalize the expected increase in the probability of termination through
foreclosure in future periods. This is similar in spirit to the type of exclusion restrictions
considered by Magnac and Thesmar (2002) and Abbring and Daljord (2018), but we also
note that those papers assume the utility for one choice is either zero or a known function.
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The ex-ante value function can be written recursively as

Vt(s, a−1 = 0) =E
[
max

{
u(s, 0) + ε(0) + β E[Vt+1(s′, 0) | s, a = 0],

u(s, 1) + ε(1),

u(s, 2) + ε(2) + β E[Vt+1(s′, 2) | s, a = 2]
}
| s, a−1 = 0

]
,

Vt(s, a−1 = 2) =E
[
max

{
u(s, 0) + ε(0) + β E[Vt+1(s′, 0) | s, a = 0],

u(s, 1) + ε(1),

u(s, 2) + ε(2)} | s, a−1 = 2] .

Using the choice-specific value functions in (11) and Assumption 1, the ex-ante value
function can be written compactly as

Vt(s, a−1) = ∑
a∈A

∫
1{δt(s, a−1, ε) = a}[vt(s, a−1, a) + ε(a)]Fε(dε).

From Theorem 1 of Arcidiacono and Miller (2011), Vt(s, a−1) can be expressed as functions
of period payoffs, conditional choice probabilities and state transition probabilities for an
arbitrary sequence of choices. Only a finite number of period payoffs is needed in cases
where there is a terminal choice such as the mortgage termination choice in our application,
a renewal action such as the engine replacement choice in Rust (1987), or in general the
distribution of future states following a specific sequence of choices does not depend on
initial choices (Arcidiacono and Miller (2011)). Specialized to our application, with the
presence of a terminal choice, Vt(s, a−1) can be written as period payoff of immediate
termination plus functions of the conditional choice probabilities. To see this, define the
function

(12) w(za, zb) =
∫

[za 1{za + ε(0) ≥ ε(1), za + ε(0) ≥ zb + ε(2)}

+zb 1{zb + ε(2) ≥ ε(1), zb + ε(2) ≥ za + ε(0)}] Fε(dε).

With this definition, Vt(s, a−1) can be written as

Vt(s, a−1) =u(s, 1) + w (vt(s, a−1, 0)− u(s, 1), vt(s, a−1, 2)− u(s, 1))

+ ∑
a∈A

∫
1{δt(s, a−1, ε) = a}ε(a)Fε(dε).(13)

The conditional choice probabilities in this setting are σt(s, a−1, a). We will focus on the
following six conditional probabilities: σt(s, 0, 0), σt(s, 0, 1), σt(s, 0, 2), σt(s, 2, 0), σt(s, 2, 1)
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and σt(s, 2, 2). They can be written in terms of the error distribution Fε as

σt(s, 0, 0) =
∫

1 {vt(s, 0, 0) + ε(0) ≥ u(s, 1) + ε(1),

vt(s, 0, 0) + ε(0) ≥ vt(s, 0, 2) + ε(2)} Fε(dε),(14)

σt(s, 0, 2) =
∫

1 {vt(s, 0, 2) + ε(2) ≥ u(s, 1) + ε(1),

vt(s, 0, 2) + ε(2) ≥ vt(s, 0, 0) + ε(0)} Fε(dε).(15)

σt(s, 2, 0) =
∫

1 {vt(s, 2, 0) + ε(0) ≥ u(s, 1) + ε(1),

vt(s, 2, 0) + ε(0) ≥ u(s, 2) + ε(2)} Fε(dε),(16)

σt(s, 2, 2) =
∫

1 {u(s, 2) + ε(2) ≥ u(s, 1) + ε(1),

u(s, 2) + ε(2) ≥ vt(s, 2, 0) + ε(0)} Fε(dε).(17)

Note here that once the continuation action is taken (a−1 = 0), given s the action in the
last period no longer affects the choices going forward. As a result, vt(s, 0, 0) = vt(s, 2, 0)
in (16) and (17).

Equations (14), (15), (16), and (17) define a mapping Γ from payoff differences to choice
probabilities:19

(18) Γ : [vt(s, a−1, 0)− u(s, 1), vt(s, a−1, 2)− u(s, 1)] 7→ [σt(s, a−1, 0), σt(s, a−1, 2)] .

Under the full support assumption (Assumption 1.c), Γ is invertible by Proposition 1

of Hotz and Miller (1993) and surjective by Norets and Takahashi (2013) and Lemma
1 of BCNP. Therefore, given any choice probabilities the payoff differences following
continuation can be solved uniquely and we will denote the components of the inverse
mapping simply as Γ−1

1 (σt(s, 0, ·)) = vt(s, 0, 0)− u(s, 1) and Γ−1
2 (σt(s, 0, ·)) = vt(s, 0, 2)−

u(s, 1). Similarly, following repeated termination (a−1 = 2) the differences are identi-
fied as Γ−1

1 (σt(s, 2, ·)) = vt(s, 2, 0) − u(s, 1) and Γ−1
2 (σt(s, 2, ·)) = u(s, 2) − u(s, 1). Hotz

and Miller (1993) also prove that there exists a mapping such that ψ∗(σt(s, a−1, ·)) =

∑a∈A
∫

1{δt(s, a−1, ε) = a}ε(a)Fε(dε). Therefore from (13), Vt(s, a−1) can be written as

(19) Vt(s, a−1) = u(s, 1) + ψ(σt(s, a−1, ·)),

where ψ(σt(s, a−1, ·)) = w
(
Γ−1(σt(s, a−1, ·))

)
+ ψ∗(σt(s, a−1, ·)), and a−1 is the previous

19Recall that there are three choices, but we note that only two payoff differences and two choice probabilities
are relevant for the Γ mapping. The remaining difference vt(s, a−1, 0)− vt(s, a−1, 2) is determined by the
subtracting the two differences appearing as functional arguments, and the remaining choice probability is
determined as σt(s, a−1, 1) = 1− σt(s, a−1, 0)− σt(s, a−1, 2).
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action which can be 0 (continuation) or 2 (default). This representation generalizes that
of (8), for the special case of the type I extreme value distribution, using immediate
termination (a = 1) as the reference action. Since the choice probabilities σt(s, ·, ·) are
identified, these ex-ante value functions are identified up to u(s, 1). The remaining ex-ante
value Vt(s, 1) is zero since a = 1 is a terminal choice.

The presence of two terminating actions allows us to identify u(s, 1) and therefore
the full payoff function u. To show this, we make the following additional completeness
assumption, which guarantees that there is sufficient variation in the state transition density,
as the following theorem shows. Broadly, completeness is similar to a full rank condition
for finite dimensional models,20 and it has been used as an identifying assumption for
nonparametric instrumental variable models (Newey and Powell, 2003; Blundell, Chen,
and Kristensen, 2007; Darolles, Fan, Florens, and Renault, 2011; Chen, Chernozhukov, Lee,
and Newey, 2014), however Canay, Santos, and Shaikh (2013) show that in some cases it is
not testable.

Assumption 2 (Completeness). The conditional distributions fs′|s,a=2 is complete for s. In
other words, for for all integrable functions h we have

∫
h(s′) fs′|s,a=2(s′) ds′ = 0 for all s if

and only if h = 0.

We will maintain this high-level assumption for now, but immediately below in
Lemma 2 we establish weaker alternative assumptions for common special cases. For
example, in our application identification will follow from the parametric, linear specifi-
cation for u without appealing to Assumption 2. To focus on identification of the utility
function, we also assume that the discount factor β is known for now. Although this is a
common practice in applied work, in Lemma 3 in below we give a condition under which
β is separately identified and we appeal to this result in our application.

Theorem 1. If Assumptions 1 and 2 hold and β is identified (e.g., it is known or identified by
Lemma 3 below), then the utility function u is identified.

We note that unlike BCNP, our identification result does not require that we observe
the final decision period T. This “short panel” setting is common in empirical work and is
the subject of a recent study by Arcidiacono and Miller (2015). However, in contrast to their
findings for more general models, in our setting the period utility function and discount
factor are identified without assuming the utility function is known for one choice.

We conclude our discussion of identification by considering sufficient conditions for
the completeness required by Assumption 2 in some common special cases. The proofs
appear in Appendix B.

20In the finite-dimensional setting, if a square matrix A has full rank then Ax = 0 implies x = 0. In an
infinite-dimensional setting, if the distribution of Y is complete for X, then

∫
g(y) f (y | x) dy = 0 for all x

implies g(y) = 0 for all y.
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Lemma 2. Suppose Assumption 1 holds and β is identified (e.g., it is known or identified by
Lemma 3 below).

a. Constant termination payoffs: If the termination payoffs are unknown, but constant, then u
is identified without additional assumptions.

b. Parametric utility: If for each choice a, u(s, a) = u(s, a; θa) with θ = (θ0, θ1, θ2), then u is
identified if the following parametric identification conditions hold:

i. u(s, 0; θ0) = u(s, 0; θ0
0) = 0 for all s if and only if θ0 = θ0

0 .

ii. E
[
u(s′, 1; θ1)− u(s′, 1; θ1

0) | s, a = 2
]
= 0 for all s if and only if θ1 = θ1

0 .

iii. u(s, 2; θ2) = u(s, 2; θ2
0) = 0 for all s if and only if θ2 = θ2

0 .

c. Linear utility: If the payoffs have linear representations of the form u(s, a) = u(s, a; θa) = s>θa,
where θa are choice-specific linear coefficients for each a, then u is identified if the covariance
matrix E[sts>t ] and the conditional covariance matrix E[st+1s>t+1 | st, at = 2] have full rank.

d. Finite state space: Suppose that s ∈ S with |S| < ∞. Then u is identified if the |S| × |S|
choice-specific Markov transition matrix Π2 = [Pr(s′ | s, a = 2)] has full rank.

Therefore, in each case there are weaker alternatives to the completeness assumption
we invoke for the general nonparametric u case.

A.3. Identification of the Discount Factor β

As Chung et al. (2014) noted, in finite-horizon models the period utility function is identi-
fied by the terminal period leaving the discount factor to be identified by intertemporal
variation in observed behavior. BCNP showed that the discount factor is identified when
there is variation in the CCPs over time, which is natural in finite-horizon models. Under
the same assumption, stated below, we verify that the discount factor β is identified in our
model with multiple terminating actions. This does not require that the terminal period is
observed or that the termination payoffs are known.

Assumption 3 (Nonstationary Choice Probabilities). For some period t, s and a−1 ∈ {0, 2},
σt+1(s, a−1, ·) 6= σt+2(s, a−1, ·).

Remark. The nonstationarity required by Assumption 3 is used only for identifying β, not
u, as shown in the following Lemma 3. This assumption requires at least three periods of
data to be available. In finite-horizon models, it is natural that optimal decisions depend
on the number of time periods remaining; hence the choice probabilities are expected to be
nonstationary. In stationary models (e.g., infinite-horizon models under commonly used
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assumptions), Assumption 3 will not hold and therefore β needs to be identified from
other sources. Also note that β is a product of the factor of time discounting b and the
survival probability p(s). Because the survival probability is a known function of borrower
demographics, identification of β implies identification of the time discounting factor b.
Finally, we note that the identification result in Theorem 1 above for the utility function is
conditional on β being identified or known.

Lemma 3. If Assumptions 1 and 3 hold, β is identified.

B. Proofs

Proof of Lemma 1

Suppose the true utility function is u where the period utility of termination u(s, 1) 6= 0.
First, following Rust (1994) we can find an observationally equivalent utility function
ũ that yields the same observable CCPs σ while satisfying an identifying restriction
such as a “zero normalization”. For each state s and choice a, define ũ(s, 1) = 0 and
ũ(s, 0) = u(s, 0)− u(s, 1) + β E[u(s′, 1) | s, a = 0]. Then, by substituting u and ũ into (10)
above, we can verify that both utility functions yield the same differences in choice-specific
value functions and hence the same observable CCPs. Therefore the utility function is not
identified with Assumption 1 alone.

Next, using (8) from the Arcidiacono-Miller Lemma, with termination (a = 1) as the
reference choice, we can state the ex-ante value function as in (9). For the true utility
function we have Vt(s) = u(s, 1)− log σt(s, 1) + γ and for the alternative utility function ũ
we have Ṽt(s) = ũ(s, 1)− log σ̃t(s, 1) + γ. But σ̃t = σt and so the value functions are only
equal everywhere if u = ũ, which is the case when the utility function is identified.

Proof of Theorem 1

First, note that∫ (
u(s′, 2)− u(s′, 1)

)
fs′|s,a=2(s

′) ds′ =
∫

Γ−1
2 (σt+1(s′, 2, ·)) fs′|s,a=2(s

′) ds′,

where the equality follows from (18). The right hand side is a functional of the ob-
served data. By the completeness assumption on the conditional distribution of fs′|s,a=2

(Assumption 2), there is a unique solution for u(s, 2)− u(s, 1) and hence it is identified.
Next, subtracting u(s, 1) from both sides of vt(s, 0, 2) and substituting for Vt+1(s′, 2)
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we have

vt(s, 0, 2)− u(s, 1) = u(s, 2)− u(s, 1) + β E
[
Vt+1(s′, 2) | s, a = 2

]
= u(s, 2)− u(s, 1) + β E

[
u(s′, 1) | s, a = 2

]
+ β E

[
ψ(σt+1(s′, 2, ·)) | s, a = 2

]
.

As the mapping Γ in (18) is invertible, vt(s, 0, 2)− u(s, 1) is also identified from the data.
Substituting and solving to obtain an expression for the remaining unknown, u(s′, 1),
yields

E
[
u(s′, 1) | s, a = 2

]
=β−1 [vt(s, 0, 2)− u(s, 1)]− β−1 [u(s, 2)− u(s, 1)]− E

[
ψ(σt+1(s′, 2, ·)) | s, a = 2

]
.(20)

The period payoff u(s, 1) is then identified under Assumption 2. Once u(s, 1) and the
difference u(s, 2)− u(s, 1) are identified, so is u(s, 2). Finally, subtracting u(s, 1) from both
sides of the expression for the remaining choice-specific payoff vt(s, a−1, 0) gives

vt(s, a−1, 0)− u(s, 1) = u(s, 0)− u(s, 1) + β E
[
Vt+1(s′, 0) | s, a = 0

]
= u(s, 0)− u(s, 1) + β E

[
u(s′, 1) | s, a = 0

]
+ β E

[
ψ(σt+1(s′, 0, ·)) | s, a = 0

]
.

where a−1 ∈ {0, 2}. The left-hand side is identified, and so are all quantities on the
right-hand side of the second equality except for u(s, 0). Solving for u(s, 0) yields

(21) u(s, 0) = u(s, 1) + [vt(s, a−1, 0)− u(s, 1)]− β E
[
u(s′, 1) + ψ(σt+1(s′, 0, ·)) | s, a = 0

]
.

Therefore, u(s, a) is identified for all choices a = 0, 1, 2.

Proof of Lemma 2

We consider each case in turn below.

a. Constant termination payoffs: Suppose that the termination payoffs are constant: u(·, 1) =
c1 and u(·, 2) = c2. Then the difference is identified immediately as c2 − c1 = u(·, 1)−
u(·, 2) = Γ−1

2 (σt(·, 2, ·)), where the second equality follows from the proof of Theorem 1.
Next, c1 is separately identified by (20) since E [u(s′, 1) | s, a = 2] = c1, and then c2 is
also identified. Finally, u(s, 0) is identified from (21) as before, in the proof of Theorem 1.

b. Parametric utility: Define ∆1,2u(s; θ1,2) ≡ u(s, 2; θ2) − u(s, 1; θ1), where θ1,2 = (θ1, θ2).
Recall that ∆1,2u(·; θ1,2) = Γ−1

2 (σt(·, 2, ·)) is identified. Therefore, the set Θ1,2 of param-
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eter values θ1,2 which yield the above identified difference is also identified. This set
may not be a singleton, but we note that the vector of true parameters (θ1

0 , θ2
0) is an

element. Importantly, for all elements θ1,2 ∈ Θ1,2, including the true parameters, the
right-hand-side of (20) is constant because it depends only on the difference ∆1,2u(·; θ1,2)

and other identified quantities. The parameter θ1
0 , which appears on the left-hand side

of (20) through u(s, 1; θ1
0) is then separately identified under part ii of the maintained

assumption. This, in turn, identifies the function u(·, 2; θ2
0), and under part iii of the

assumption, the parameter θ2
0 is identified. Finally, as before, the function u(·, 0; θ0

0) is
identified from (21). Under part i of the assumption, the parameter θ0

0 is identified.

c. Linear utility: Suppose that u(s, a) = s>θa for all s and a. Define ∆θ1,2 ≡ θ2 − θ1. Then
the condition identifying the utility difference u(s, 2)− u(s, 1) becomes

u(st+1, 2)− u(st+1, 1) = s>t+1∆θ1,2 = Γ−1
2 (σt+1(st+1, at = 2, ·)).

Premultiplying both sides by st+1, taking expectations, and using the rank assumption
on the conditional covariance matrix allows us to solve for ∆θ1,2:

∆θ1,2 = E[st+1s>t+1 | st, at = 2]−1 E[st+1Γ−1
2 (σt+1(st+1, 2, ·)) | st, at = 2].

Turning to (20), we can premultiply by st+1, substitute to obtain expressions in terms of
conditional choice probabilities, and solve to find

θ1 = E[st+1s>t+1 | st, at = 2]−1
{

β−1 E[st+1Γ−1
2 (σt(st, 0, ·))− st+1s>t ∆θ1,2 | st]

−E [stψ (σt+1(st+1, 2, ·)) | st, at = 2]}

This separately identifies θ1 and therefore θ2. In line with previous arguments, θ0 is
then identified from (21) under the full rank assumption on E[sts>t ].

d. Finite state space: In this case, there are a finite number of unknowns represented by
choice-specific vectors u0, u1, and u2, each of length |S|. Similarly, let σt,a−1,a, wt,a−1 ,
and γt,a−1,j denote, respectively, denote the vectors of values σt(s, a−1, a), ψ(σt(s, a−1, ·)),
and Γ−1

j (σt(s, a−1, ·)) stacked across s. First, the differences in termination payoffs are
identified as u2 − u1 = γt,2,2. Then, stacking (20) yields another matrix equation for u1:
Π2u1 = β−1(γt,0,2 − γt,2,2)−Π2wt,2. Since Π2 has full rank, this equation identifies u1,
and hence u2 separately. As in previous cases, u0 is then identified directly from the
vectorized counterpart of (21).
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Proof of Lemma 3

Given Assumption 3, the conditional choice probabilities are nonstationary and σt+1(s, a−1, a) 6=
σt+2(s, a−1, a) for some s, a−1 and a. Because

σt+1(s, a−1, a) =
∫

1
(
u(s, a) + ε(a) + β E[Vt+2(s′, a) | s, a−1, a]

≥ u(s, ã) + ε(ã) + β E[Vt+2(s′, ã) | s, a−1, ã] ∀ã ∈ A
)

Fε(dε),

in order for σt+1(s, a−1, a) 6= σt+2(s, a−1, a), the conditional expectation of future values
must be time varying for some ã ∈ A,

(22) E[Vt+2(s′, ã) | s, a−1, ã] 6= E[Vt+3(s′, ã) | s, a−1, ã].

Fix a = ã, and consider the expressions for vt(s, a−1, ã) in two adjacent time periods:

vt+1(s, a−1, ã) = u(s, ã) + β E
[
Vt+2(s′, ã) | s, a−1, ã

]
vt+2(s, a−1, ã) = u(s, ã) + β E

[
Vt+3(s′, ã) | s, a−1, ã

]
.

Subtracting these equations and solving for β, we find

(23) β =
(vt+1(s, a−1, ã)− u(s, 1))− (vt+2(s, a−1, ã)− u(s, 1))

E[Vt+2(s′, ã)−Vt+3(s′, ã) | s, a−1, ã]
.

The denominator is nonzero given (22). All terms on the right hand side of (23) can be
identified from the CCPs (see (18) and (19)) and the transition density of the state variables,
and therefore β is identified.

C. Out-of-Sample HECM Policy Function Fit

Previously in Table 5 we reported the within-sample fit of the HECM policy function
estimates. Here, to provide an additional way to evaluate the fit of the first-stage model
we randomly divide the sample into two halves. The first half is used as a training sample
to estimate the model parameters and then the model predictions are compared with the
actual choices for observations in the second half of the sample. These results are reported
in Table 12. In addition to good within-sample fit, these results indicate that the model
also has good out-of-sample prediction power.
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Table 12. Out-of-Sample Prediction of Reduced Form HECM Policy Function Estimates

Termination Refinance Default
Prediction Sample Prediction Data Prediction Data Prediction Data

Unconditional
All 1.35% 1.51% 0.41% 0.32% 4.09% 4.12%

By HECM Type
Fixed Rate 1.19% 1.35% 0.29% 0.34% 4.87% 4.70%
Adjustable Rate 1.59% 1.73% 0.57% 0.29% 2.99% 3.32%

By Loan Age
1 0.56% 0.79% 0.31% 0.26% 0.41% 0.43%
2 1.76% 1.84% 0.48% 0.45% 3.19% 3.23%
3 1.81% 1.99% 0.39% 0.35% 5.84% 6.02%
4 1.29% 1.42% 0.46% 0.18% 7.95% 7.83%

By Credit Score
Q1 1.09% 0.96% 0.44% 0.31% 11.82% 12.08%
Q2 1.27% 1.51% 0.33% 0.35% 3.18% 3.35%
Q3 1.37% 1.80% 0.39% 0.41% 0.75% 0.59%
Q4 1.68% 1.78% 0.47% 0.21% 0.50% 0.37%

By Net Equity
Q1 1.10% 1.02% 0.19% 0.17% 8.85% 8.74%
Q2 1.34% 1.60% 0.37% 0.26% 4.52% 4.64%
Q3 1.40% 1.73% 0.48% 0.35% 2.23% 2.36%
Q4 1.57% 1.69% 0.59% 0.50% 0.74% 0.76%

By Available HECM Credit
Q1 1.35% 1.53% 0.42% 0.37% 5.89% 5.95%
Q2 1.46% 1.35% 0.44% 0.22% 0.49% 0.39%
Q3 1.25% 1.48% 0.32% 0.13% 0.17% 0.22%
Q4 1.34% 1.53% 0.39% 0.26% 0.01% 0.04%

This table shows the out-of-sample prediction fit of the policy function estimates, both unconditionally and
conditional on some explanatory variables. Q1–Q4 denote the first through fourth quartiles of the stated
variables. The data is randomly divided into a training sample and a prediction sample of equal sizes. The
policy function is estimated using the training sample.
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