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Abstract. This paper considers the theoretical, computational, and econometric prop-

erties of a class of continuous time dynamic discrete choice games with stochastically

sequential moves, introduced by Arcidiacono, Bayer, Blevins, and Ellickson (2016). In

a generalized version of the model with heterogeneous move arrival rates, we first re-

establish conditions for existence of a Markov perfect equilibrium. Then, we consider

nonparametric identification of the model primitives with only discrete time data sampled

at a fixed time interval. We consider identification not only of the payoff functions, as

previous work has done, but also the move arrival rates. Three canonical models are

considered: a single agent renewal model, a dynamic model of entry and exit, and a

quality ladder model of oligopoly dynamics. These models are foundational for many

applications in applied microeconomics. Through these examples we examine the com-

putational properties of the model and statistical properties of estimators via a series of

small- and large-scale Monte Carlo experiments. These experiments shed light on how

the parameter estimates behave as one moves from continuous time data to discrete time

data of decreasing frequency and on the computational feasibility of the model as the

number of firms grows.

Keywords: Continuous time, Markov decision processes, dynamic discrete choice, dy-

namic games, identification.

JEL Classification: C13, C35, C62, C73.

*I am grateful for numerous useful comments from and discussions with seminar participants at Columbia

1



1. Introduction

This paper studies continuous-time econometric models of dynamic discrete choice games.

Work on continuous time dynamic games by Doraszelski and Judd (2012) and Arcidiacono,

Bayer, Blevins, and Ellickson (2016) (henceforth ABBE) and others was motivated by their

ability to allow researchers to compute and estimate more realistic, large-scale games and

to carry out complex counterfactual policy experiments which were previously infeasible

due to computational limitations.

For many economic models there is not a natural, fixed time interval at which agents

make decisions. Despite this, it has been standard practice for applied researchers to

calibrate the decision interval in their empirical model to the sampling interval of the

data. However, allowing agents to make decisions asynchronously at (possibly unknown)

stochastic points in continuous time (which may be unknown and stochastic) can be both

more natural and easier computationally. Even in cases where there is a compelling reason

to model decisions as simultaneous and occurring at fixed time intervals, there is in general

no reason that the decision interval should coincide exactly with the data sampling interval.

Continuous time models also have the benefit of being invariant to the interval at which

observations are recorded, while standard dynamic discrete choice models have different

functional forms when applied to different time intervals.

Given the practical and conceptual benefits continuous time models, the main goal

of this paper is to develop new results on identification of a generalized version of the

ABBE model which allows for firm- and state-specific move arrival rates. First, existence

of Markov perfect equilibrium and a linear characterization of the value function are

University, Indiana University, Northwestern University, Texas A&M University, the University of British

Columbia, the University of Chicago, the University of Iowa, the University of Michigan, and the University

of Montreal, as well as conference attendees at the 2013 Meeting of the Midwest Econometrics Group, the 2014

Meeting of the Midwest Economics Association, the 2014 University of Calgary Empirical Microeconomics

Workshop, the 2015 Econometric Society World Congress and the 2019 International Association for Applied

Econometrics conference. This work builds on previous joint research with Peter Arcidiacono, Patrick Bayer,

and Paul Ellickson and has benefited tremendously from our many discussions together.
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established in the model. Next, identification conditions for the model in general and in

the context of three canonical example models are examined. Specifically, we consider

identification of the rate of move arrivals which was assumed to be known in previous

work. Finally, the computational and econometric properties are explored via a series

of Monte Carlo experiments. A point of particular interest in our experiments is how

estimates behave as one moves from ideal continuous time sampling to discrete time data

sampled at longer intervals.

Modeling economic processes in continuous time dates back at least several decades to

work in time series econometrics by Phillips (1972, 1973), Sims (1971), Geweke (1978), and

Geweke, Marshall, and Zarkin (1986) and work on longitudinal models by Heckman and

Singer (1986). Despite this early work on continuous time models, discrete time models

became the de facto standard for dynamic discrete choice and now have a long, successful

history in structural applied microeconometrics starting with the pioneering work of Gotz

and McCall (1980), Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984). A recent

series of papers (Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pakes,

Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008) have shown how to

extend two-step estimation techniques, originally developed by Hotz and Miller (1993) and

Hotz, Miller, Sanders, and Smith (1994) in the context of single-agent dynamics, to more

complex multi-agent settings. The computation of multi-agent models remains formidable,

despite a growing number of methods for solving for equilibria (Pakes and McGuire, 1994,

2001; Doraszelski and Satterthwaite, 2010).

Dynamic decision problems are naturally high-dimensional and the computational

challenges involved are even greater in the context of strategic games, where, traditionally,

the simultaneous actions of players introduces a further dimensionality problem. In order

to solve for optimal policies, one must calculate players’ expectations over all combinations

of actions of their rivals. The cost of computing these expectations grows exponentially

in the number of players, making it difficult or impossible to compute the equilibrium in

many economic environments. This unfortunate reality has severely limited the scale and
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the degree of heterogeneity in applied work using these methods.

Because of these limitations some authors have recently considered continuous time

models which more closely reflect the nature and timing of actions by agents in the models

while also reducing the computational burden. Doraszelski and Judd (2012) showed that

continuous-time dynamic games have desirable computational properties, significantly

decreasing the computational burden required to evaluate the Bellman operator, which can

be used to compute equilibria. ABBE demonstrated the empirical tractability of continuous-

time games, particularly for applications in industrial organization. They proposed an

econometric model which retains the computational advantages of continuous time models

while incorporating many familiar discrete choice features of discrete time models. They

proposed a two-step conditional choice probability (CCP) estimator for their model, thus

connecting continuous time games with a long line of work on estimation of discrete time

dynamic games. They showed that it is feasible to estimate even extremely large-scale

games, but that it is also now possible to carry out counterfactuals in those games, which

would have been computationally prohibitive in a simultaneous-move discrete time model.

ABBE demonstrated these advantages in the context of an empirical application which

analyzed the entry, exit, expansion, contraction of grocery chain stores in urban markets

throughout the United States from 1994–2006 with a particular focus on the effects of

Walmart’s entry into this sector.

The ABBE model was developed to make estimation of large-scale models in industrial

organization feasible along with counterfactual simulations using those models. Continu-

ous time models have since been used in many applications including Takahashi (2015) to

movie theaters, Deng and Mela (2018) to TV viewership and advertising, Nevskaya and

Albuquerque (2019) to online games, Agarwal, Ashlagi, Rees, Somaini, and Waldinger

(2021) to allocation of donor kidneys, Jeziorski (2022) to the U.S. radio industry, Schiraldi,

Smith, and Takahashi (2012) to supermarkets in the U.K., Lee, Roberts, and Sweeting (2012)

to baseball tickets, Cosman (2017) to bars in Chicago, Mazur (2017) to the U.S. airline

industry, Kim (2021) to the U.S. retail banking industry, and Qin, Vitorino, and John (2022)
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to airline networks in China.

The remainder of this paper is organized as follows. In Section 2, we review a

generalized version of the ABBE model that permits additional heterogeneity in the form

of player-specific discount rates and move arrival rates that may vary by player and state.

We establish a linear representation of the value function in terms of CCPs as well as the

existence of a Markov perfect equilibrium in the more general model. We then develop

new identification results for the model in Section 3. We use two canonical examples

throughout the paper to illustrate our results: a single agent renewal model based on

Rust (1987) and a 2 × 2 entry model similar to example models used by Aguirregabiria

and Mira (2007), Pesendorfer and Schmidt-Dengler (2008), and others. Although our

running examples are intentionally quite simple, to better illustrate the main ideas, in

Section 4 we introduce a third example: a quality ladder model of oligopoly dynamics

with heterogeneous firms based on the model of Ericson and Pakes (1995).1 Finally, in

Section 5 we examine the computational and econometric properties via a series of Monte

Carlo experiments. Section 6 concludes.

2. A Continuous Time Dynamic Discrete Choice Game with Stochastically

Sequential Moves

We consider infinite horizon discrete games in continuous time indexed by t ∈ [0, ∞)

with N players indexed by i = 1, . . . , N. We introduce a heterogeneous generalization of

the ABBE model, where players may have different discount rates and where the move

arrival rates may differ by player and across states. After formalizing the components of

the structural model, we establish a linear representation of the value function in terms

of conditional choice probabilities, as in ABBE and Pesendorfer and Schmidt-Dengler

(2008), as well as existence of a Markov perfect equilibrium in the more general model. We

conclude the section with a comparison of discrete- and continuous-time models.

1As another example, Blevins and Kim (2019) specify a continuous-time version of the dynamic entry-exit
model of Aguirregabiria and Mira (2007).
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2.1. State Space

At any instant, the payoff-relevant market conditions that are common knowledge to all

players can be summarized by a state vector x, which is a member of a finite state space

X with K ≡ |X| < ∞. Each element x ∈ X represents a possible state of the market and

contains information about the market structure (e.g., which players are active, the quality

of each player) and market conditions (e.g., demographic and geographic characteristics,

input prices). The states x ∈ X are typically represented as vectors of real numbers in

a finite-dimensional Euclidean space RL. The components of x can be player-specific

states, such as the number of stores operated by a retail chain, or exogenous market

characteristics, such as population. For example, x = (x1, . . . , xN , d) where the components

xi are player-specific states, such as incumbency status or the number of stores operated

by a chain, and d is an exogenous market characteristic, such as population or the level of

demand.

Because the state space is finite there is an equivalent encoded state space representation

K = {1, . . . , K}. Although X is the most natural way to interpret the state, using K is

convenient because it allows us to vectorize payoffs, value functions, and other quantities.

Renewal Example. As an example, consider a continuous-time version of the single-agent

renewal model of Rust (1987). The state of the model is the accumulated mileage of a bus

engine x ∈ {x1, x2, . . . , xK}, so the state can more simply be represented as an integer index

k ∈ K = {1, . . . , K}.

2 × 2 Entry Example. As a second example, consider a simple two-firm entry game with a binary

exogenous state variable. Each firm i ∈ {1, 2} has two actions j ∈ {0, 1}. The choice j = 1

represents a switching choice: enter if inactive, or exit if active. On the other hand, the choice j = 0

represents a continuation choice: remain active or remain inactive. The exogenous state represents

the level of demand, which can either be high or low. The state vector xk has three components:

x1k and x2k are activity indicators for firms 1 and 2 and the level of demand is represented by
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dk ∈ {L, H}. Therefore, in vector form the state space is

X = {(0, 0, L), (1, 0, L), (0, 1, L), (1, 1, L), (0, 0, H), (1, 0, H), (0, 1, H), (1, 1, H)}.

In encoded form, the state space is simply

K = {1, 2, 3, 4, 5, 6, 7, 8}.

2.2. Decisions & Endogenous State Changes

As in discrete time games, the players in our model can make actions and these actions

influence the evolution of the market-wide state vector. Each player has J actions repre-

sented by the choice set J = {0, 1, 2, . . . , J − 1}. When the model is in state k, the holding

time until the next move by player i is exponentially distributed with rate parameter λik. In

other words, decision times for player i in state k occur according to a time-homogeneous

Poisson process with rate λik. We assume these processes are independent across players

and the rates λik are finite for all i and k, reflecting the fact that monitoring the state

and making decisions is costly, so continuous monitoring (λik = ∞) is infeasible. Let hijk

denote the hazard rate at which player i takes action j in state k such that the overall rate

of decision in state k is λik = ∑J−1
j=0 hijk. The choice-specific hazards are determined endoge-

nously in the model through the equilibrium dynamic payoff maximization problems of

players, which we discuss in detail below. When player i chooses action j, the state jumps

immediately and deterministically from k the continuation state denoted by l(i, j, k).

In most economic models, the actions of players only affect the individual components

of the overall state vector. For example, when a new firm enters a market it may change

the firm-specific activity indicator for that firm but not the level of demand in the market.

As we will see below, this leads to sparsity of the continuous time model and helps with

identification.

Renewal Example (continued). There is a single agent in this model, the manager of a bus
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company, so N = 1. Suppose the manager decides whether to replace a bus engine (j = 1) or not

(j = 0). Hence, the choice set is J = {0, 1}. The hazard rate of engine replacement in state k

is h1k (where we drop the i index for simplicity). In practice we may assume the overall rate of

decisions constant and equal to λ. This would imply the rate of (unobservable) non-replacement

is h0k = λ − h1k. Even in this case, where the overall rate of decisions is constant, the rates of

replacement and non-replacement (specific decisions) are endogenous and vary across states. This

is similar to the case of discrete time models, where the sum of conditional choice probabilities is

necessarily constant and equal to one while the individual choice probabilities vary across states.

The continuous time model allows another degree of flexibility in that the rate of move arrivals can

be different from one.

2.3. Exogenous State Changes

The state of the model can also evolve over time in response to exogenous events, which

we attribute to an artificial player referred to as nature, indexed by i = 0. This player is

responsible for state changes that cannot be attributed to the action of any other player

i > 0 (e.g., changes in population or per capita income). When the model is in state k, let

qkl denote the hazard rate at which transitions to another state l ̸= k occur. The rate qkl

may be zero if direct transitions from k to l are not possible, or qkl may be some positive

but finite value representing the hazard rate of such a transition. Therefore, the overall

rate at which the system leaves state k for any other state l ̸= k is ∑K
l ̸=k qkl .

Renewal Example (continued). Suppose the exogenous mileage transition process is characterized

by a single rate parameter γ governing one-state-ahead mileage increases. This rate is constant

across states for simplicity, so for all l ̸= k we have

qkl =


γ if l = k + 1

0 otherwise.

2 × 2 Entry Example (continued). In the 2 × 2 entry model, there are two exogenous states:

8



high demand (d = H) and low demand (d = L). Suppose nature switches from H to L at rate γHL

and back to H at rate γLH. Then we have

(1) qkl =


γHL if dk = H and dl = L,

γLH if dk = L and dl = H,

0 otherwise.

2.4. Payoffs

In the continuous time setting, we distinguish between the flow payoffs that a player

receives while the model remains in state k, denoted uik, and the instantaneous choice-

specific payoffs from making choice j in state k at a decision time t, denoted cijk(t). The

instantaneous payoffs are additively separable as cijk(t) = ψijk + ε ijk(t), where ψijk is the

mean payoff and ε ijk(t) is a choice-specific unobserved payoff. Player i observes the vector

ε ik(t) ≡
(
ε ijk(t), j = 0, . . . , J − 1

)
of choice-specific unobservables before choosing action j.

All players and the researcher observe the state k, but only player i observes ε ik(t).

Remark. Note that in discrete time models, because all actions and state changes resolve

simultaneously, the period payoffs are written as functions of the state, the unobservables,

and the actions of all players (e.g., ui(a1, . . . , aN , xt, ε it)). In our continuous-time model, the

payoffs resulting from competition in the product market accrue as flows uik in a specific

state k while the choice-specific payoffs cijk(t) accrue at the instant the decision is made.

Renewal Example (continued). In the renewal model the agent faces a cost minimization problem

where the flow utility uik is the cost of operating a bus with mileage k. For example, if the cost of

mileage is β then a parametric flow utility function could be

uik = −βk.

9



Upon continuation, no cost is paid but a fixed amount µ > 0 is paid to replace the engine:

ψijk =


0 if j = 0,

−µ if j = 1.

Continuation does not change the state, but upon replacement the state resets immediately to k = 1:

l(i, j, k) =


k if j = 0,

1 if j = 1.

Following either choice, the agent receives an iid shock ε ijk.

2.5. Assumptions

Before turning to the equilibrium, we pause and collect our assumptions so far.

Assumption 1 (Discrete States). The state space is finite: K ≡ |X| < ∞.

Assumption 2 (Discount Rates). The discount rates ρi ∈ (0, ∞), i = 1, . . . , N are known.

Assumption 3 (Move Arrival Times). Move arrival times follow independent Poisson

processes with rate parameters λik for each player i = 1, . . . , N and state k = 1, . . . , K and

qkl for exogenous state changes from each state k to l ̸= k due to nature, with 0 ≤ λik < ∞

and 0 ≤ qkl < ∞.

Assumption 4 (Bounded Payoffs). The flow payoffs and choice-specific payoffs satisfy

|uik| < ∞ and
∣∣ψijk

∣∣ < ∞ for all i = 1, . . . N, j = 0, . . . , J − 1, and k = 1, . . . , K.

Assumption 5 (Additive Separability). The instantaneous payoffs are additively separable

as cijk(t) = ψijk + ε ijk(t).

Assumption 6 (Distinct Actions). For all i = 1, . . . , N and k = 1, . . . , K:

(a) l(i, j, k) = k and ψijk = 0 for j = 0,
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(b) l(i, j, k) ̸= l(i, j′, k) for all j = 0, . . . , J − 1 and j′ ̸= j.

Assumption 7 (Private Information). The choice-specific shocks ε ik(t) are iid across players

i, states k, and decision times t. The joint distribution Fik is known, is absolutely continuous

with respect to Lebesgue measure (with joint density fik), has finite first moments, and has

support equal to RJ .

Assumptions 1–7 are generalized counterparts of Assumptions 1–4 of ABBE that allow

for player heterogeneity and state dependent rates.2 Assumptions 1–5 were discussed

above. Assumption 6 formalizes that j = 0 is a costless continuation action and that all

choices are observationally distinct. The first part of Assumption 6 requires that if an

inaction decision which does not change the state, denoted j = 0, is included in the choice

set, then the instantaneous payoff associated with that choice must be zero.3 This is an

identifying assumption. The second part of Assumption 6 requires actions j > 0 to be

meaningfully distinct in the ways they change the state. This serves to rule out cases where

two actions are indistinguishable.

2.6. Strategies, Best Responses, and Value Function

A stationary Markov policy for player i is a function δi : K × RJ → J : (k, ε ik) 7→ δi(k, ε ik)

which assigns to each state k and vector ε ik an action from J. For a given policy function

δi, we can define the conditional choice probabilities

(2) σijk = Pr[δi(k, ε ik) = j | k]

for all choices j and states k. Let ςim denote player i’s beliefs regarding the actions of rival

player m, given by a collection of J × K probabilities for each state k and choice j. Let ςii

2Specifically, Assumption 1 is equivalent to Assumption 1 of ABBE, Assumptions 2 and 3 generalize
Assumptions 2(a) and 2(b–c) of ABBE, Assumption 4 is equivalent to Assumptions 2(d–e) of ABBE, and
Assumptions 5–6 are equivalent to Assumptions 3–4 of ABBE, and Assumption 7 generalizes Assumption 5 of
ABBE.

3The role of the choice j = 0 is similar to the role of the “outside good” in models of demand. Because not
all agents in the market are observed to purchase one of the goods in the model, their purchase is defined to
be the outside good.
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denote player i’s best response probabilities. Then we let ςi = (ς1, . . . , ςN) denote player

i’s beliefs and best responses. Finally, let Vik(ςi) denote the expected present value for

player i being in state k and behaving optimally in the future given beliefs ςi. For given

beliefs ςi, the optimal policy rule for player i satisfies the following inequality condition:

(3) δi(k, ε ik) = j ⇐⇒ ψijk + ε ijk + Vi,l(i,j,k)(ςi) ≥ ψij′k + ε ij′k + Vi,l(i,j′,k)(ςi) ∀j′ ∈ J.

That is, at each decision time the policy δi assigns the action that maximizes the agent’s

expected future discounted payoff.

Remark. Given the threshold-crossing rule above, if the private information shocks are iid

following the Type 1 Extreme Value distribution, the implied choice probabilities have a

familiar logistic functional form:

(4) σijk =
exp

(
ψijk + Vi,l(i,j,k)(ςi)

)
∑j′ exp

(
ψij′k + Vi,l(i,j′,k)(ςi)

) .

Given beliefs ςi held by player i, we can define the value function (here, a K-vector)

Vi(ςi) = (Vi1(ςi), . . . , ViK(ςi))
⊤ where the k-th element Vik(ςi) is the present discounted

value of all future payoffs obtained when starting in some state k and behaving optimally

in future periods given beliefs ςi. For a small time increment τ, under Assumption 3 the

probability of an event with rate λik occurring is λikτ. Given the discount rate ρi, the

discount factor for such increments is 1/(1 + ρiτ). Thus, for small time increments τ the

present discounted value of being in state k is (omitting the dependence on ςi for brevity):

Vik =
1

1 + ρiτ

[
uikτ + ∑

l ̸=k
qklτVil + ∑

m ̸=i
λmkτ

J−1

∑
j=0

ςimjkVi,l(m,j,k)

+λikτ E max
j

{
ψjk + ε ijk + Vi,l(i,j,k)

}
+

(
1 −

N

∑
i=1

λikτ − ∑
l ̸=k

qklh

)
Vik + o(τ)

]
.

Rearranging and letting τ → 0, we obtain the following recursive expression for Vik for
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beliefs ςi:

(5) Vik =
uik + ∑l ̸=k qklVil + ∑m ̸=i λmk ∑j ςimjkVi,l(m,j,k) + λik E maxj{ψijk + ε ijk + Vi,l(i,j,k)}

ρi + ∑l ̸=k qkl + ∑m λmk
.

The denominator contains the sum of the discount factor and the rates of all events that

might possibly change the state. The numerator is composed of the flow payoff for being

in state k, the rate-weighted values associated with exogenous state changes, the rate-

weighted values associated with states that occur after moves by rival players, and the

expected current and future value obtained when a move arrival for player i occurs in

state k. The expectation is with respect to the joint distribution of ε ik = (ε i0k, . . . , ε i Jk)
⊤.

Renewal Example (continued). In the renewal model, the value function can be expressed very

simply as follows (where the i subscript has been omitted since N = 1):

Vk =
1

ρ + γ + λ
(uk + γVk+1 + λ E max {ε0k + Vk,−c + ε1k + V1}) .

2 × 2 Entry Example (continued). In the 2 × 2 entry model, the value function for player 1 in

state k, where xk = (xk1, xk2, dk) ∈ {0, 1} × {0, 1} × {L, H}, can be expressed recursively as

V1k =
1

ρ1 + 1{dk = L}γLH + 1{dk = H}γHL + λ1k + λ2k

×
(

u1k + 1{dk = L}γLHV1,l(0,H,k) + 1{dk = H}γHLV1,l(0,L,k) + λ2kς120kVi,k

+λ2kς121kVi,l(2,1−xk2,k) + λ1k E max
{

ε i0k + Vi,k, ψi1k + ε i1k + Vi,l(1,1−xk1,k)

})
,

where l(0, H, k) and l(0, L, k) are the continuation states when nature switches the level of demand

to H and L, respectively, when in state k. ς12jk is firm 1’s belief about firm 2 choosing j.

2.7. Linear Representation of the Value Function

It will be convenient to express the Bellman equation in (5) in matrix notation. Let

Σm(ςim) denote the transition matrix implied by the beliefs ςim and the continuation state
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function l(i, ·, ·). That is, the (k, l) element of the matrix Σm(ςim) is the probability of

transitioning from state k to state l as a result of an action by player m under the beliefs

of player i. Let Q0 = (qkl) denote the matrix of rates of exogenous state transitions and

let Q̃0 = Q0 − diag(q11, . . . , qKK) be the matrix formed by taking Q0 and replacing the

diagonal elements with zeros.

Then, following (5) we define the operator Γi as

(6) Γi(Vi) = Di

[
ui + Q̃0Vi + ∑

m ̸=i
LmΣm(ςim)Vi + Li {Σi(ςii)Vi + Ci(ςii)}

]
,

where Di is the K × K diagonal matrix containing the coefficient from (5) for each k, hence

(Di)kk = 1/(ρi + ∑l ̸=k qkl + ∑N
m=1 λmk), Lm = diag(λm1, . . . , λmK) is a diagonal matrix

containing the move arrival rates for player m, Ci(ςii) is the K × 1 vector containing

the ex-ante expected value of the instantaneous payoff cijk = ψijk + ε ijk for player i in

each state k given the best response probabilities ςii. That is, k-th element of Ci(ςii) is

∑J−1
j=0 ςiijk

[
ψijk + eijk(ςii)

]
, where eijk(ςii) is the expected value of ε ijk given that action j is

chosen:

eijk(ςii) ≡
1

ςiijk

∫
ε ijk · 1

{
ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k) − Vi,l(i,j′,k) ∀j′

}
f (ε ik) dε ik.

Hence, for the given beliefs ςi, the value function is a fixed point of Γi: Vi = Γi(Vi).

A central result of ABBE (Proposition 2) showed that the differences in choice-specific

value functions which appear in the definition of eijk(σi) above are functions of the

conditional choice probabilities. This is a continuous-time analog of a similar result of

Hotz and Miller (1993, Proposition 1). We build on this result to establish the following

linear representation of the value function in terms of conditional choice probabilities, rate

parameters, and payoffs. This representation generalizes Proposition 6 of ABBE and forms

the basis of the identification results below as well as the estimators of ABBE and Blevins

and Kim (2019). It is analogous to a similar result for discrete time games by Pesendorfer

and Schmidt-Dengler (2008, eq. 6).
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Theorem 1. If Assumptions 1–7 hold, then for a given collection of beliefs ς = (ς1, . . . , ςN), Vi

has the following linear representation for each i:

(7) Vi(ς) = Ξ−1
i (ς) [ui + LiCi(ςi)]

where

(8) Ξi(ς) = ρi IK +
N

∑
m=1

Lm[IK − Σm(ςm)]− Q0

is a nonsingular K × K matrix and IK is the K × K identity matrix.

Proof. See Appendix A.

2.8. Equilibrium

Following the literature, we focus on Markov perfect equilibria.

Definition. A Markov perfect equilibrium is a collection of stationary policy rules {δi}N
i=1

such that (3) holds for all i, k, and ε ik given beliefs ςi = (σ1, . . . , σN) generated by (2).

ABBE proved that such an equilibrium exists when players share common move arrival

and discount rates and when the move arrival rates do not not vary across states (i.e.,

λik = λ and ρi = ρ for all i and k). The following theorem extends this to the more general

model with heterogeneity.

Theorem 2. If Assumptions 1–7 hold, then a Markov perfect equilibrium exists.

Proof. See Appendix A.

2.9. Continuous Time Markov Jump Processes Representation

The reduced form of the model we consider is a finite state Markov jump process, a

stochastic process X(t) indexed by t ∈ [0, ∞) taking values in X. If we begin observing
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X(t)

t1

τ4τ2 τ3τ1

Figure 1. Finite State Markov Jump Process

A representative sample path of X(t) for t ∈ [0, ∞) with jump times tn and holding times τn shown for
n = 1, 2, 3, 4.

this process at some arbitrary time t and state X(t), it will remain in this state for a

duration of random length τ before transitioning to some other state X(t + τ). The length

of time τ is referred to as the holding time. A trajectory or sample path of such a process

is a piecewise-constant, right-continuous function of time. This is illustrated in Figure 1,

where a sample path of X(t) for t ∈ [0, T] is shown along with jump times tn and holding

times τn, with n denoting the n-th jump. Jumps occur according to a Poisson process and

the holding times between jumps are therefore exponentially distributed.

Before proceeding, we first review some fundamental properties of Markov jump

processes, presented without proof. For details see Karlin and Taylor (1975, Section 4.8) or

Chung (1967, part II). A finite Markov jump process can be summarized by it’s intensity
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matrix or infinitesimal generator matrix. Consider the intensity matrix for nature,

Q0 =



q11 q12 . . . q1K

q21 q22 . . . q2K
...

...
...

...

qK1 qK2 . . . qKK


where for k ̸= l

qkl = lim
h→0

Pr [X(t + h) = l | X(t) = k]
h

is the probability per unit of time that the system transitions from state k to state l and the

diagonal elements are qkk = −∑l ̸=k qkl so that the row sums equal zero. The holding times

before transitions out of state k follow an exponential distribution with rate parameter

−qkk, which is the sum of the off-diagonal transition rates. Conditional on leaving state k,

the system transitions to state l ̸= k with probability qkl/ ∑l ̸=k qkl = −qkl/qkk.

In the case of discrete time data, the times at which actions and state changes occur are

not observed by the econometrician. With equispaced data (e.g., annual or quarterly) only

the states at the beginning and end of each period of length ∆ are observed. Although

we cannot know the exact sequence of actions and state changes, the model allows us

to determine the likelihood of any particular transition occurring over a time interval of

length ∆ using the transition matrix, which we will denote as P(∆).

Let Pkl(∆) = Pr [X(t + ∆) = l | X(t) = k] denote the probability that the system is in

state l after a period of length ∆ given that it was initially in state k. The transition

matrix P(∆) = (Pkl(∆)) is the corresponding K × K matrix of these probabilities. For a

finite-state continuous time Markov jump processes, the Kolmogorov forward equations

form a system of matrix differential equations characterizing the transition matrix P(∆) of
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a process with intensity matrix Q (Karlin and Taylor, 1975, 4.8):

P′(∆) = QP(∆), P(0) = I.(9)

It follows that the unique solution to this system is

(10) P(∆) = exp(∆Q) =
∞

∑
j=0

(∆Q)j

j!
.

The transition matrix is the matrix exponential of the intensity matrix Q scaled by ∆. This

is the matrix analog of the scalar exponential exp(x) for x ∈ R.4

Finally, we review some properties of the exponential distribution which will be

required for constructing the value functions in the dynamic games considered below. In

particular, relating back to the structural model, note that if the model is in state k then

there are N + 1 independent competing Poisson processes (or exponential distributions)

that may change the state: one for each player and nature. The rates of these processes are

λik, for i = 1, . . . , N, and ∑l ̸=k qkl respectively. Therefore, the distribution of the minimum

holding time is exponential with rate parameter equal to the sum of the individual rates:

∑N
i=1 λik + ∑l ̸=k qkl . Notice that this is precisely the rate that appears in the denominator of

the Bellman equation in (5). Furthermore, conditional on an event the probability that it is

due to process i is λik/
(

∑N
m=1 λmk + ∑l ̸=k qkl

)
for player i > 0 (and similarly for nature).

We can think of these N + 1 processes as first branching at the player level and then

branching again at the action level: conditional on a particular player moving, which action

is chosen? Player i plays each action j in state k at rate hijk = λikσijk. Since the probabilities

σijk sum to one, we have ∑J−1
j=0 hijk = λik. Therefore, conditional on player i moving the

probability that action j is chosen is hijk/λik.

Now, in the context of the dynamic games we consider, the state space dynamics can

be fully characterized by a collection of N + 1 competing Markov jump processes with

4Although we cannot calculate the infinite sum (10) exactly, we can compute exp(∆Q) numerically using
known algorithms implemented, for example, in the Fortran package Expokit (Sidje, 1998) or the expm
command in Matlab. A more recent development is the uniformization algorithm of Sherlock (2022).
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intensity matrices Q0, Q1, . . . , QN . Each process corresponds to some player i and the

aggregate intensity matrix is defined as Q ≡ Q0 + Q1 + . . . , QN .

Renewal Example (continued). Consider the Q matrix implied by the continuous-time single-

agent renewal model. The state variable in the model is the total accumulated mileage of a bus

engine, K = {1, . . . , K}. The exogenous state transition process is characterized by a K × K

intensity matrix Q0 on K with one parameter, γ, governing the rate of mileage increases:

Q0 =



−γ γ 0 0 · · · 0

0 −γ γ 0 · · · 0
...

...
. . .

...
...

...

0 0 . . . −γ γ 0

0 0 . . . 0 −γ γ

0 0 . . . 0 0 0


.

Let σ1k denote the probability of replacement in state k. The intensity matrix for state changes

induced by the the agent is

Q1 =



0 0 0 0 · · · 0

λσ12 −λσ12 0 0 · · · 0

λσ13 0 −λσ13 0 · · · 0

λσ14 0 0 −λσ14 · · · 0
...

...
...

...
. . .

...

λσ1K 0 0 0 · · · −λσ1K


.
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X(t)

i = 0

at1 = 0

i = 1
τ11

τ02 τ03

τ14

τ05

t2 t3 t5t4t1 t

at4 = 1

Figure 2. Single agent model: a representative sample path where tn, τin, and ain denote,
respectively, the time, inter-arrival time, and action corresponding to n-th event. Moves by
the agent are denoted by i = 1 while i = 0 denotes a state change (a move by nature).

The aggregate intensity matrix in this case is Q = Q0 + Q1:

(11) Q =



−γ γ 0 0 · · · 0

λσ12 −λσ12 − γ γ 0 · · · 0

λσ13 0 −λσ13 − γ γ · · · 0

λσ14 0 0 −λσ14 − γ · · · 0
...

...
...

...
. . .

...

λσ1K 0 0 0 · · · −λσ1K


.

A representative sample path generated by this model is shown in Figure 2. Holding times

are indicated by τin, where i denotes the identity of the player (with i = 0 denoting nature) and

n denotes the event number. The agent’s decisions (atn ) are indicated at each decision time. For

example, at time t1, the agent chooses to continue without replacement (at1 = 0), while at time t4,

the agent chooses to replace (at4 = 1), resetting the mileage.

2 × 2 Entry Example (continued). Let hik be the hazard of player i switching from active to

inactive or vice versa in state k. Let γLH and γHL be the rates at which nature switches between
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Low Demand

High Demand

h11

h26

h12

γLH h27

γHLh22

h16

h24

h13

h18

h14

h15

h23h21

h28

h17

h25

(1, 0, H)

(1, 1, H)(0, 1, H)

(0, 0, H)

(1, 0, L)

(1, 1, L)(0, 1, L)

(0, 0, L)

Figure 3. Two Player Entry Game with Exogenous Demand State

demand states (i.e., demand moves from low to high at rate γLH). The aggregate state space

dynamics are illustrated in Figure 3.

The state transition hazards can be characterized by an 8 × 8 intensity matrix Q. Note that

firms cannot change the demand state, firms cannot change each other’s states, and nature cannot

change the firms’ states. Therefore, the overall intensity matrix has the form

Q =

QLL QLH

QHL QHH

 =

QL
1 + QL

2 QL
0

QH
0 QH

1 + QH
2


The low demand state L corresponds to encoded sates k = 1, . . . , 4. In this portion of the state
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space, firms change the state as follows:

QL
1 =



−h11 h11 0 0

h12 −h12 0 0

0 0 −h13 h13

0 0 h14 −h14


, QL

2 =



−h21 0 h21 0

0 −h22 0 h22

h23 0 −h23 0

0 h24 0 −h24


Importantly, the locations of the nonzero off-diagonal elements are distinct because the state-to-

state communication patterns differ. A similar structure arises for the high demand state H, for

k = 5, 6, 7, 8. Therefore, given Q we can immediately determine Q0, Q1, and Q2. The full Q matrix

is stated below in (12) in Section 3.

2.10. Comparison with Discrete Time Models

We conclude this section with a few brief remarks on continuous time and discrete time

models. First, consider a typical discrete time model in which agents make decisions in

unison and where the period between decisions is calibrated to be equal to the sampling

period of the data, say one year. In an entry/exit setting where the choice set is J = {0, 1},

this implies that there must be exactly one entry or exit per year. For example, entering and

leaving within one year is not permitted. In the discretely sampled data, passive actions

such as remaining in or out of the market are coded as active decisions (e.g., a choice to

not enter or a choice to remain in the market), but in reality they typically represent the

absense of an active choice (entry or exit) during the period. Now consider a chain store

setting where the choice is the net number of stores to open during the year, the choice set

is J = {−J, . . . , J}. This implies that there an be at most J openings or closings per year.

Hence, J must be chosen by the researcher to be the maximum number of possible stores

opened or closed by any chain firm in any period.

Now, consider a continuous time model with a common move arrival rate λ for all

players and all states. In the entry/exit setting, the choice set is still J = {0, 1} which

implies that there are on average 1/λ entries or exits per year. Multiple entries and exits

22



are allowed and the model parameters imply a distribution over the number and type of

such events. The choice set represents the set of possible instantaneous state changes, so the

chain store expansion example if we assume that no more than one store is ever opened

or closed simultaneously, then we would specify J = {−1, 0, 1}. This would imply that

on average there are at most 1/λ openings or closings per year. In the continuous time

model the rate λ is a free parameter that can adjust to match the data, thus not imposing

an ad hoc restriction on the number of actions per unit of time. In other words, the

time-aggregated implications of the continuous time model are not functionally different

if we change the time period and unrelated to the sampling period of the data.

3. Identification Analysis

Due to the time aggregation problem, our identification analysis proceeds in two main

steps corresponding to the reduced form and the structural model primitives. Deriving the

implications of the structural model can be viewed as a bottom-up exercise: the structural

primitives u and ψ imply value functions V which imply choice probabilities σ. These

probabilities along with the rates of moves, λ, and state transitions by nature, Q0, in turn

imply an intensity matrix Q. Finally, given the Q matrix and a process for sampling data,

this implies a data generating process. For example, for a fixed sampling interval ∆ the

distribution of observable data is P(∆) = exp(∆Q).

On the other hand, the identification problem requires us to consider the inverse

problem, working from the top down. These steps are represented in Figure 4. If the

complete continuous time record is potentially observable, then Q is trivially identified

and we can move to identification of the structural model. However, in the case of discrete

time data we must first use our knowledge of the data generating process, represented

by the transition matrix P(∆) for an interval ∆, to derive conditions under which we can

uniquely determine the reduced form intensity matrix Q. We will show that this is possible

under mild conditions by exploiting the restrictions that the structural model places on

the Q matrix.
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P(∆) 7→ Q 7→ {Qi, hi} 7→ {λi, σi, Vi, ψi, ui} 7→ θ

Equispaced DT data CT reduced form CT structural primitives

Figure 4. Identification Analysis

Second, with Q in hand we turn to identification of the structural primitives of the

model, namely the flow payoffs u and instantaneous payoffs ψ. We show that knowledge

of Q allows us to recover these structural primitives with fewer identifying restrictions

than are required in discrete time models.

3.1. Identification of Q

With continuous-time data, identification and estimation of the intensity matrix for finite-

state Markov jump processes is straightforward and well-established (Billingsley, 1961).

However, when a continuous-time process is only sampled at discrete points in time, the

parameters of the underlying continuous-time model may not be point identified.5 In the

present model, the concern is that there may be multiple Q matrices which give rise to the

same data generating process, which is the potentially observable transition probability

matrix P(∆) in the leading case of fixed sampling intervals.6

In discrete time settings, there is a similar identification problem that is masked when

assuming the unknown frequency of moves is equal to the (known) sampling frequency

(Hong, Li, and Wang, 2015). To see this, suppose agents move at intervals of length δ with

transition matrix P0 while the data sampling interval is ∆ > δ. Then the mapping between

the data (equispaced observations at length ∆) and the transition matrix is: P(∆) = P∆/δ
0 .

In general, there are multiple solutions to this equation (Gantmacher, 1959; Singer and

5This is known as the aliasing problem and it has been studied extensively in the context of continuous-time
systems of stochastic differential equations (Sims, 1971; Phillips, 1973; Hansen and Sargent, 1983, 1991; Geweke,
1978; Kessler and Rahbek, 2004; McCrorie, 2003; Blevins, 2017). See Figure 1 of Blevins (2017) for an illustration
in the frequency domain, where the problem is perhaps most obvious.

6A related issue is the embeddability problem: could the transition matrix P(∆) have been generated by a
continuous-time Markov jump process for some intensity matrix Q or some discrete-time chain over fixed
time periods of length δ? This problem was first proposed by Elfving (1937). Kingman (1962) derived the set
of embeddable processes with K = 2 and Johansen (1974) gave an explicit description of the set for K = 3.
Singer and Spilerman (1976) summarize several known necessary conditions for embeddability involving
testable conditions on the determinant and eigenvalues of P(∆). We assume throughout that the continuous
time model is well-specified and that such an intensity matrix exists.
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X(t)

t1 t2t2 − ∆ t

τ1 ∆

Figure 5. Time aggregation: Two distinct paths which end in the same state at t2 and
begin in the same state at t2 − ∆ and but differ over intermediate interval of length ∆.

Spilerman, 1976), meaning that identification of P0 is non-trivial.

To illustrate this issue in the continuous time setting, Figure 5 displays two distinct

paths which coincide both before and after an interval of length ∆, but which take different

intermediate steps. Consider the possible paths of the process between times t2 − ∆ and

t2. The dashed path first moves to a higher state before arriving at the resulting state kt2 ,

while the dashed and dotted path first moves to a lower state and arrives in kt2 at a later

time (but before t2). There are an infinite number of such paths,but the dynamics of the

process over the interval are summarized by the transition matrix P(∆).

Much of the previous work on this identification problem seeks conditions on the

observable discrete-time transition matrix P(∆). We briefly review some of these results

in the next subsection, but our approach is to show that one can instead identify Q via

identifying restrictions on the primitives of the underlying structural model and that such

restrictions easily arise from the statement of the model itself. These can be viewed as

exclusion restrictions.

For example, in applications there are typically player-specific components of the state

vector where player i is not permitted to change the players-specific state of player j and
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vice-versa. In an entry-exit model, such a state is incumbency status: players can enter

and exit by their own action, but no player can enter or exit on behalf of another player.

Similarly, if the overall state vector has components that are exogenous state variables,

such as population, then we know that any state changes involving those variables must

be due to nature and not by an action of any other player. This natural structure implies

many linear restrictions on the Q matrix. We show that restrictions of this form limit the

domain of the mapping Q 7→ exp(∆Q) = P(∆) in such a way as to guarantee an almost

surely unique intensity matrix Q for any given discrete time transition matrix P(∆).

3.1.1. Identification of Unrestricted Q Matrices

Returning to the general problem of identification of Q, recall that the question is whether

there exists a unique matrix Q that leads to the observed transition matrix P(∆) = exp(∆Q)

when the process is sampled at uniform intervals of length ∆. The matrix logarithm ln P(∆)

is not unique in general (see Gantmacher, 1959; Singer and Spilerman, 1976), so the question

amounts to finding suitable conditions under which there is a unique solution.

Previous mathematical treatments have tended to view the relationship exp(∆Q) =

P(∆) from the perspective of the transition matrix P(∆). In such cases there is not

an underlying model that generates Q, so Q is the model primitive of interest and is

unrestricted (aside from requirement that it must be a valid intensity matrix). As a result,

most previous work on the aliasing problem focused on finding sufficient conditions

on the matrix P(∆) (rather than Q) to guarantee that ln P(∆) is unique. For example,

if the eigenvalues of P(∆) are distinct, real, and positive, then Q is identified (Culver,

1966). More generally, Culver (1966) proved that Q is identified if the eigenvalues of

P(∆) are positive and no elementary divisor (Jordan block) of P(∆) belonging to any

eigenvalue appears more than once. Other sufficient conditions for identification of Q

include mink{Pkk(∆)} > 1/2 (Cuthbert, 1972) and det P(∆) > e−π (Cuthbert, 1973). See

Singer and Spilerman (1976) for a summary of these results and others.

Other sufficient conditions for identification of Q involve alternative sampling schemes.
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For example, Q can always be identified for some sufficiently small sampling interval ∆

(Cuthbert, 1973; Singer and Spilerman, 1976; Hansen and Sargent, 1983). A useful result

for experimental studies is that Q is identified if the process is sampled at two distinct

intervals ∆1 and ∆2 where ∆2 ̸= k∆1 for any integer k (Singer and Spilerman, 1976, 5.1).

The first type of conditions—restrictions on P(∆)—are based on a “top down” approach

and are undesirable in cases where Q is generated by an underlying model. The second

type of conditions are based on changing how the continuous time process is sampled,

which is not possible to change if the data have already been collected at regular intervals.

Instead, we take a “bottom up” approach which allows economic theory to inform our

identification conditions via restrictions on Q that guarantee uniqueness of ln P(∆). For

applied economists, more compelling conditions are likely to involve cross-row and cross-

column restrictions on the Q matrix and the locations of known zeros of the Q matrix. As

we discuss below, such restrictions arise naturally once the collection of players, actions,

and the resulting state transitions are defined.

3.1.2. Structural Restrictions for Identification of Q

The problem of identifying continuous time models with only discrete time data has

also appeared previously in the econometrics literature, in work by Phillips (1973) on

continuous time regression models. He considered multivariate, continuous-time, time-

homogeneous regression models of the form y′(t) = Ay(t) + ξ(t), where y(t) is an n × 1

vector and A is an n × n structural matrix. He discusses the role of prior information on

the matrix A and how it can lead to identification. He showed that A is identified given

only discrete time observations on y if A satisfies certain rank conditions.

Our proposed identification strategy is inspired by this work on multivariate regression

models, but our model is different because the Q matrix is known to be an intensity matrix

(rather than an arbitrary matrix of regression coefficients) and has a rather sparse structure

which is dictated by an underlying structural model. Yet, there are a number of similarities:

the present model can also be characterized by a system of differential equations as in
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(9), where the intensity matrix Q plays a role similar to the matrix A above. If Q is an

valid intensity matrix, then the functions P(∆) which solve this system are the transition

matrices of continuous-time stationary Markov chains (Chung, 1967, p. 251–257).

The structural model restricts Q to a lower-dimensional subspace since it is sparse and

must satisfy both within-row and across-row restrictions, and given the results above it

seems likely that these restrictions could lead to identification of Q. That is, even if there

are multiple matrix solutions to the equation P(∆) = exp(∆Q), it is unlikely that two of

them simultaneously satisfy the restrictions of the structural model. We return to the two

examples introduced previously to illustrate this idea.

Renewal Example (continued). In the single-agent renewal model the aggregate intensity matrix

is given in (11) of Section 2. The number of nonzero hazards in this matrix is substantially less

than the total number. Of the 20 non-trivial state-to-state transitions, only 8 are permitted: four to

nature and four by action of the player. The remaining 12 transitions are not possible in a single step.

Nature cannot decrease mileage and can only increase it by one state at a given instant (although

multiple state jumps are possible over an interval of time). The agent can only reset mileage to the

initial state. This results in nine known zeros of the aggregate Q matrix. As we show below, these

restrictions are sufficient to identify Q. Note that given Q, we can separately determine both Q0

and Q1. Additionally, the choice-specific hazards h1k are the products of the overall move arrival

rates and the conditional choice probabilities, which introduces shape restrictions on h1k = λσ1k

across states k.

2 × 2 Entry Example (continued). In the 2 × 2 × 2 entry example, the aggregate intensity
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matrix is Q = Q0 + Q1 + Q2:

(12) Q =



· h11 h21 0 γL 0 0 0

h12 · 0 h22 0 γL 0 0

h23 0 · h13 0 0 γL 0

0 h24 h14 · 0 0 0 γL

γH 0 0 0 · h15 h25 0

0 γH 0 0 h16 · 0 h26

0 0 γH 0 h27 0 · h17

0 0 0 γH 0 h28 h18 ·



,

where the diagonal elements have been omitted for simplicity. Some transitions cannot happen at

all, such as (0, 1, L) to (1, 0, L). The remaining transitions can happen only due to the action of

one of the firms, but not the other. For example, moving from (0, 0, H) to (1, 0, H) is only possible

if firm 1 chooses to become active. From any state, the set of other states to which either firm can

move the state as a result of an action is limited naturally by the model and the definition of the

state space. This structure yields intensity matrices that are sparse, which makes identification of Q

more likely even with time aggregation since any observationally equivalent Q matrix must have

the same sparsity pattern. Finally, given Q we can again separately recover Q0, Q1, and Q2.

Similar sparse structures arise in even models with large numbers of players and

millions of states, as in the application of ABBE. In light of this lower-dimensional

structure, we build on the results of Blevins (2017) who gave sufficient conditions for

identification of the intensity matrix Q of a general finite state Markov jump processes.

These conditions were based on structural restrictions on the matrix Q of the general linear

form R vec(Q) = r. For the K × K matrix Q = (qkl), vec(Q) is the vector obtained by

stacking the columns of Q: vec(Q) = (q11, q21, . . . , qK1, . . . , q1K, . . . , qKK)
⊤.

These restrictions will serve to rule out alternative Q matrices. Gantmacher (1959)

29



showed that all solutions Q̃ to exp(∆Q̃) = P(∆) have the form

Q̃ = Q + UDU−1

where U is a matrix whose columns are the eigenvectors of Q and D is a diagonal matrix

containing differences in the complex eigenvalues of Q and Q̃. This means that both the

eigenvectors U and the real eigenvalues of Q are identified. Any other such matrices Q̃

must also satisfy the prior restrictions, so R vec(Q̃) = r. By the relationship between Q

and Q̃ above, we also have R vec(Q + UDU−1) = r. But R vec(Q) = r and by linearity of

the vectorization operator, R vec(UDU−1) = 0. An equivalent representation is

R(U−⊤ ⊗ U) vec(D) = 0.

Here, adapting Theorem 1 of Blevins (2017) to the special case of finite-state Markov

jump processes, when there are at least
⌊K−1

2

⌋
linear restrictions and R has full rank, then

D must be generically zero and therefore the eigenvalues of Q̃ and Q are equal. If the

eigenvectors and all eigenvalues of Q̃ are the same as those of Q, the matrices must be

equal and therefore Q is identified.

The following theorem establishes that there are sufficiently many full rank restrictions

to identify Q in a broad class of games. This theorem includes exogenous market-specific

state variables and shows that such states increase the number of zero restrictions and

make identification of Q more likely, as do player-specific state variables.

Theorem 3 (Identification of Q). Suppose the state vector is x = (x0, x1, . . . , xN) ∈ X0 ×X1 ×

· · · ×XN where the component x0 ∈ X0 is an exogenous market characteristic taking |X0| = K0

values and for each i = 1, . . . , N the component xi is a player-specific state affected only by the

action of each player with |Xi| = K1 possible distinct values. If Q has distinct eigenvalues that do

not differ by an integer multiple of 2πi/∆, then Q is generically identified when

(13) K0KN
1 − K0 − NJ +

1
2
≥ 0.
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The quantity on the left is strictly increasing in K1, strictly increasing in K0 when K1 > 1, and

strictly decreasing in J.

Proof. See Appendix A.

Generic identification means that Q is identified with the exception of a measure zero

set of population Q matrices (see Phillips, 1973; Blevins, 2017). The sparsity of Q helps

and is increasing in both the number of exogenous states K0 and player-specific states K1,

but decreasing in the number of choices J. Therefore, for identification we need either a

sufficiently large number of states or a sufficiently small number of choices. Fortunately,

in most applications J is small relative to K.

2 × 2 Entry Example. Our running entry model example is a binary choice game with N = 2,

J = 2, K0 = 2, and K1 = 2, so by Theorem 3 Q is generically identified.

Furthermore, we can see that any binary choice game (N > 1 with J = 2) with

meaningful player-specific states (K1 > 1) is identified, regardless of the number of

players or exogenous market states K0. The sufficient condition in this case simplifies to

K0(KN
1 − 1) ≥ N − 1

2 . When K0 ≥ 1 and K1 ≥ 2 we have K0(KN
1 − 1) ≥ 2N − 1 which

exceeds N − 1
2 for integers N > 1.

3.1.3. Identification of Qi

Next, we make the following assumption which requires that given the aggregate intensity

matrix Q, we can determine the player-specific intensity matrices Qi.

Assumption 8. The mapping Q → {Q0, Q1, . . . , QN} is known.

This assumption is obvious in the models we have considered, where players cannot

change each other’s state variables and where actions by nature can be distinguished

from the actions of players. Note also that the diagonal elements are unimportant: if the

off-diagonal elements of each Qi can be identified from Q, then diagonal elements are

equal to the negative of the sum of the off-diagonal elements. This assumption can be
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verified by inspection of Q in both of our running examples. In the single-agent renewal

example Q is given in (11) and for the two-player entry model Q is given in (12). A

sufficient condition for Assumption 8 is that the continuation states resulting from actions

of different players are distinct: for all players i and m ̸= i and all states k,

{l(i, j, k) : j = 1, . . . , J − 1} ∩ {l(m, j, k) : j = 1, . . . , J − 1} = ∅.

3.2. Identification of Hazards, Value Functions and Payoffs

We now establish that the value functions, instantaneous payoffs, and utility functions are

identified. Let Vi = (Vi1, . . . , ViK)
⊤ denote the K-vector of valuations for player i in each

state. Let ψij = (ψij1, . . . , ψijK)
⊤ denote the K-vector of instantaneous payoffs for player i

making choice j in each state and let ψi = (ψ⊤
i1 , . . . , ψ⊤

i J )
⊤. Given an appropriate collection

of linear restrictions on these quantities, we show below that they are identified.

Importantly, we note that when j = 0 is a latent or unobserved continuation action,

it is not possible to identify the rates hi0k even with continuous time data, so we cannot

immediately treat them as identified quantities.

For simplicity, we consider the case where where the choice-specific errors have a type 1

extreme value distribution. Noting that hijk = λikσijk and recalling the choice probabilities

in (4), in this case differences in log hazards can be written as

ln hijk − ln hi0k = ln σijk − ln σi0k = ψijk + Vi,l(i,j,k) − Vik.

Rearranging, we have

ln hijk = ln hi0k + ψijk + Vi,l(i,j,k) − Vik.

The hazards on the left hand size for j = 1, . . . , J − 1 are identified from Q, while the

quantities on the right hand size are unknowns to be identified.

Stacking equations across states k and choices j gives a linear system with (J − 1)K
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identified hazards, K unknown hazards, (J − 1)K unknown instantaneous payoffs, and

K unknown valuations. The total number of unknowns is (J + 1)K. There are 2K more

unknowns than identified hazards, so identification fails without further restrictions.

Before proceeding, we define Sij to be the state transition matrix induced by the

continuation state function l(i, j, ·). In other words, Sij is a permutation matrix where

the (k, l) element is 1 if playing action j in state k results in a transition to state l and 0

otherwise. Let IK denote the K × K identity matrix. Then we have,


ln hi1

...

ln hi,J−1

 =



IK IK 0 . . . 0 Si1 − IK

IK 0 IK . . . 0 Si2 − IK
...

...
...

...
...

...

IK 0 0 . . . IK Si,J−1 − IK





ln hi0

ψi1
...

ψi,J−1

Vi


.

Define Xi to be the (J − 1)K × (J + 1)K partitioned matrix and let Ri and ri denote linear

restrictions on the unknowns for player i. Let h+i denote the identified hazards for choices

j > 0 and h0
i denote the unidentified hazards for j = 0. Then the augmented system is:

ln h+i

ri

 =

Xi

Ri




ln h0
i

ψi

Vi

 .

Under Assumption 6, for any action j > 0 in any state k, the continuation state is

different from k. Therefore, the diagonal elements of Sij are all zero and Sij − IK has full

rank for each j > 0 and these blocks are linearly independent across j. This means that Xi

has rank (J − 1)K and so we will need 2K additional full-rank restrictions for identification.

Theorem 4. If for player i there exists a collection of linear restrictions represented by a matrix Ri
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and vector ri such that

Ri


ln h0

i

ψi

Vi

 = ri

and the matrix
[

Xi
Ri

]
has rank (J + 1)K, then h0

i , ψi, and Vi are identified.

First, we note that the number of restrictions per player is independent of the total

number of players in the game. Therefore, the total number of required identifying

restrictions is only linear in N. On the other hand, for discrete time models the number of

restrictions needed is exponential in N (Pesendorfer and Schmidt-Dengler, 2008).

It is helpful now to consider some examples. If we assume that the instantaneous

payoffs are constant across k, as is common in applications, this implies ψijk − ψijl = 0 for

all choices j > 0 and all states l ̸= k. This gives (J − 1)K restrictions per player. If there are

are J ≥ 3 choices, this is sufficient. When J = 2, we still need K additional restrictions. If

we further assume that the move arrival rate is constant across states (∑J−1
j=0 hijk = ∑J−1

j=0 hijl

for all l ̸= k) then we have K − 1 restrictions. In this case, even if J = 2 then only 1

additional restriction is are needed.

Finding additional full-rank restrictions is not difficult in most applications. Examples

include states where the value function is known, for example, if Vik = 0 when a firm has

permanently exited. Exclusion restrictions of the form Vik = Vik′ are also common, where

k and k′ are two states that differ only by a rival-specific state and are payoff equivalent to

firm i. In all of these cases, the rank condition can be verified by inspection in applications.

Renewal Example (continued). In the single-agent renewal model, since the replacement cost

does not depend on the mileage state we have ψ1k = c for all k. This alone yields K − 1 restrictions

of full rank of the form ψ1k − ψ11 = 0 for all k. The linearity of the utility function imposes

restrictions on V, and although this does not fit in the linear restriction framework of Theorem 4 it

also contributes to identification of ψ and V.
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2 × 2 Entry Example (continued). In the simple two-player entry-exit model, we may suppose

that the entry costs and scrap values are independent of the market state (high or low demand) and

whether a rival is present. In other words, ψi1k − ψi11 for all states k, yielding K − 1 restrictions

per player.

Finally, we note that in practice the overall rate of actions can be identified through the

nonlinear restrictions imposed by the distributional assumptions on the error term, which

imply shape restrictions on the choice probabilities across states. These are difficult to char-

acterize in the linear restriction framework we have used here, but in practice parametric

assumptions will aid identification in addition to the linear restrictions considered above.

3.3. Identification of the Payoffs

It remains to identify the K-vector of payoffs ui for each player i. In light of the linear

representation in (7),

ui = Ξi(Q)Vi − LiCi(σi)

where Ξi is the matrix function defined in (8). Under the maintained assumptions and

restrictions, Vi and ψi are identified for each player. The choice probabilities σ are also

identified since Q is identified. Therefore, ui can be obtained from the equation above.

Theorem 5 (Identification of Flow Payoffs). Under the maintained assumptions, if for any

player i the quantities Vi, ψi, and Q are identified, then the flow payoffs ui are also identified.

4. A Continuous-Time Quality Ladder Model of Oligopoly Dynamics

To illustrate the application to dynamic games used in empirical industrial organization

we consider a discrete control version of the quality ladder model proposed by Ericson

and Pakes (1995). This model has been examined extensively by Pakes and McGuire (1994,

2001), Doraszelski and Satterthwaite (2010), Doraszelski and Pakes (2007), and others.
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The model consists of at most N firms who compete in a single product market. The

products are differentiated in that the product of firm i has some quality level ωi ∈ Ω,

where Ω = {1, 2, . . . , ω̄, ω̄ + 1} is the finite set of possible quality levels, with ω̄ + 1 being

a special state for inactive firms. Firms with ωi < ω̄ + 1 are incumbents. In contrast to

Pakes and McGuire (1994), all controls here are discrete: given a move arrival, firms choose

whether or not to move up the quality ladder, not how much to spend to increase their

chances of doing so.

We consider the particular example of price competition with a single differentiated

product where firms make entry, exit, and investment decisions, however, the quality

ladder framework is quite general and can be easily adapted to other settings. For example,

Doraszelski and Markovich (2007) use this framework in a model of advertising where,

as above, firms compete in a differentiated product market by setting prices, but where

the state ωi is the share of consumers who are aware of firm i’s product. Gowrisankaran

(1999a) develops a model of endogenous horizontal mergers where ωi is a capacity level

and the product market stage game is Cournot with a given demand curve and cost

functions that enforce capacity constraints depending on each firm’s ωi.

4.1. State Space Representation

We make the usual assumption that firms are symmetric and anonymous. That is, the

primitives of the model are the same for each firm and only the distribution of firms across

states, not the identities of those firms, is payoff-relevant. By imposing symmetry and

anonymity, the size of the state space can be reduced from the total number of distinct

market structures, (ω̄ + 1)N , to the number of possible distributions of N firms across ω̄ + 1

states.7 The set of relevant market configurations is thus the set of ordered tuples of length

ω̄ + 1 whose elements sum to N, denoted S = {(s1, . . . , sω̄+1) : ∑j sj = N, sj ∈ Z∗}, where

Z∗ is the set of nonnegative integers. In this notation, each vector ω = (ω1, . . . , ωN) ∈ ΩN

7In practice, we use the “probability density space” encoding algorithm described in Gowrisankaran
(1999b), to map market structure tuples s ∈ S to integers x ∈ X.
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maps to an element s = (s1, . . . , sω̄+1) ∈ S with sj = ∑N
i=1 1{ωi = j} for each j.

Each firm also needs to track its own quality, so payoff relevant market configurations

from the perspective of firm i are described by a tuple (ωi, s) ∈ Ω × S, where ωi is

firm i’s quality level and s is the market configuration. For our implementation, we

map the multidimensional space Ω ×S to an equivalent one-dimensional state space

K = {1, . . . , |Ω| × |S|}. so that we can represent quantities in matrix-vector form and we

use pre-computed transition addresses to avoid re-computing continuation states.

4.2. Product Market Competition

Again, we follow Pakes and McGuire (1994) in assuming a continuum of consumers with

measure M̄ > 0 and that each consumer’s utility from choosing the good produced by

firm i is g(ωi)− pi + ε i, where ε i is iid across firms and consumers and follows a type I

extreme value distribution. The g function is used to enforce an upper bound on profits.

As in Pakes, Gowrisankaran, and McGuire (1993), for some constant ω∗ we define

g(ωi) =


ωi if ωi ≤ ω∗,

ωi − ln(2 − exp(ω∗ − ωi)) if ωi > ω∗.

Let si(ω, p) denote firm i’s market share given the state ω and prices p. From McFadden

(1974), we know that the share of consumers purchasing good i is

si(ω, p) =
exp(g(ωi)− pi)

1 + ∑N
j=1 exp(g(ωj)− pj)

.

In a market of size M̄, firm i’s demand is qi(ω, p) = M̄si.

All firms have the same constant marginal cost c ≥ 0. Taking the prices of other firms,

p−i, as given, the profit maximization problem of firm i is

max
pi≥0

qi(p, ω)(pi − c).
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Caplin and Nalebuff (1991) show that (in this single-product firm setting) there is a unique

Bertrand-Nash equilibrium, which is given by the solution to the first order conditions:

∂qi

∂pi
(p, ω)(pi − c) + qi(p, ω) = 0.

Given the functional forms above, the first order conditions become

−(pj − c)(1 − sj) + 1 = 0.

We solve this nonlinear system of equations numerically using the Newton-Raphson

method to obtain the equilibrium prices and the implied profits π(ωi, ω−i) = qi(p, ω)(pi −

c) earned by each firm i in each state (ωi, ω−i).

4.3. Incumbent Firms

We consider a simple model in which incumbent firms have three choices upon receiving

a move arrival. Firms may continue without investing at no cost, they may invest an

amount κ in order to increase the quality of their product from ωi to ω′
i = min{ωi + 1, ω̄},

or they may exit the market and receive some scrap value φ. We denote these choices,

respectively, by the choice set J = {0, 1, 2}. When an incumbent firm exits the market,

ωi jumps deterministically to ω̄ + 1. Associated with each choice j is a private shock ε ijt.

These shocks are iid over firms, choices, and time and follow a standard type I extreme

value distribution. Given the future value associated with each choice, the resulting choice

probabilities are defined by a logit system.

For any market-wide state k ∈ K, let ωk = (ωk1, . . . , ωkN) denote the corresponding

market configuration in ΩN . In the general notation introduced above, the instantaneous
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payoff ψijk to firm i from choosing choice j in state k is

ψijk =


0 if j = 0,

−κ if j = 1,

φ if j = 2.

The state resulting from continuing (j = 0) is simply l(i, 0, k) = k. Similarly, for investment

(j = 1), l(i, 1, k) = k′ where state k′ is the element of X such that ωk′i = min{ωki + 1, ω̄}

and ωk′m = ωkm for all firms m ̸= i. Note that we are considering only incumbent firms

with ωki < ω̄ + 1. Exiting is a terminal action with an instantaneous payoff, but no

continuation value.

Each incumbent firm pays a constant flow fixed cost µ while remaining in the mar-

ket, and receives the flow profits πik = π(ωki, ωk,−i) associated with product market

competition. The value function for an incumbent firm in state k is thus

Vik =
1

ρ + ∑l ̸=k qkl + ∑N
m=1 λmk

(
πik − µ + ∑

l ̸=k
qklVil + ∑

m ̸=i
λmk ∑

j
σmjkVi,l(m,j,k)

+λik E max
{

Vik + ε i0, Vi,l(i,1,k) − κ + ε i1, φ + ε i2

})

where λik = λ for incumbents and potential entrants and λik = 0 if firm i is not active in

state k. Conditional upon moving while in state k, incumbent firms face the maximization

problem max {Vik + ε i0,−κ + Vik′ + ε i1, φ + ε i2} . The resulting choice probabilities are

σi0k =
exp(Vik)

exp(Vik) + exp(−κ + Vik′) + exp(φ)
,

σi1k =
exp(−κ + Vik′)

exp(Vik) + exp(−κ + Vik′) + exp(φ)
,

σi2k = 1 − σi0k − σi1k,

where, as before, k′ = l(i, 2, k) denotes the resulting state after investment by firm i.
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4.4. Potential Entrants

Whenever the number of incumbents is smaller than N, a single potential entrant receives

the opportunity to enter at rate λ. Potential entrants are short-lived and do not consider

the option value of delaying entry. If firm i is a potential entrant with the opportunity to

move it has two choices: it can choose to enter (j = 1), paying a setup cost η and entering

the market immediately in a predetermined entry state ωe ∈ Ω or it can choose not to

enter (j = 0) at no cost. Associated with each choice j is a stochastic private payoff shock

εe
ijt. These shocks are iid across firms, choices, and time and are distributed according to

the type I extreme value distribution.

In our general notation, for actual entrants (j = 1) in state k the instantaneous payoff

is ψi1k = −η and the continuation state is l(i, 1, k) = k′ where k′ is the element of K with

ωk′i = ωe and ωk′m = ωkm for all m ̸= i. For firms that choose not to enter (j = 0) in state

k, we have ψi0k = 0 and the firm leaves the market with no continuation value. Thus, upon

moving in state k, a potential entrant faces the problem

max {εe
i0,−η + Vik′ + εe

i1}

yielding the conditional entry-choice probabilities

σi1k =
exp(Vik′ − η)

1 + exp(Vik′ − η)
.

4.5. State Transitions

In addition to state transitions that result directly from entry, exit, or investment decisions,

the overall state of the market follows a jump process where at some rate γ, the quality of

each firm i jumps from ωi to ω′
i = max{ωi − 1, 1}. This process represents an industry-

wide (negative) demand shock, interpreted as an improvement in the outside alternative.
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5. Monte Carlo Experiments

In this section we describe Monte Carlo experiments conducted using the single-agent

renewal model and the quality ladder model described in Section 4.

5.1. Maximum Likelihood Estimation

The model can be estimated using maximum likelihood if either the equilibria can be

enumerated or there is a unique equilibrium. Since the focus of this paper is identification,

rather than developing a new estimator, our Monte Carlo experiments all proceed using the

maximum likelihood estimator using value function iteration.8 Multiplicity of equilibria is

not a concern for the single agent model and appears not to be a major issue in practice

for the continuous-time oligopoly model specifications we consider below, although we

have not established that there is a unique equilibrium.

With continuous-time data, we have a sample of N̄ tuples (τn, in, an, kn, k′n). Each

describes a jump or move where, for each observation n: τn is the holding time since the

previous event, in is the player index associated with this event (in = 0 is nature), an is

the action taken by player in, kn denotes the state at the time of the event, and k′n denotes

the state immediately after the event. Let g(τ; λ) and G(τ; λ) denote the pdf and cdf of

Expo(λ). Now, let ℓn(θ) denote the likelihood of observation n given θ:

ℓn(θ) = g(τn; q(kn, kn; θ))︸ ︷︷ ︸
Arrival time

q0(kn, kn; θ)

q(kn, kn; θ)︸ ︷︷ ︸
Event is jump

· p(kn, k′n; θ)︸ ︷︷ ︸
Transition


1{in=0}

×

qN(kn, kn; θ)

q(kn, kn; θ)︸ ︷︷ ︸
Event is move

· σ(in, an, kn; θ)︸ ︷︷ ︸
CCP


1{in>0}

.

8More generally, it is possible that methods proposed for discrete time models, such as the homotopy
method (Borkovsky, Doraszelski, and Kryukov, 2010; Besanko, Doraszelski, Kryukov, and Satterthwaite,
2010; Bajari, Hong, Krainer, and Nekipelov, 2010) or recursive lexicographical search (Iskhakov, Rust, and
Schjerning, 2016), could be adapted to our model as well, but this is beyond the scope of the present paper.

41



Here, q(k, k′; θ) denotes the absolute value of the (k, k′) element of the intensity matrix

Q(θ) for given parameters θ. We use q0(k, k′; θ) and qN(k, k′; θ) similarly to denote the

elements of Q0 and ∑N
i=1 Qi respectively. Finally, p(k, k′; θ) denotes the probability of a

jump from k to k′ conditional on a jump occurring. Now the full log-likelihood of the

sample of N̄ observations on the interval [0, T] is simply

ln LCT
N̄ (θ) =

N̄

∑
n=1

ln ℓn(θ) + ln [1 − G(T − tN̄ , q(kN̄ , kN̄ ; θ))] .

The final term is the probability of not observing an event on the interval (tN̄ , T].

With discrete-time data sampled at equispaced intervals ∆ our sample takes the form

of a collection of states {k1, . . . , kN̄} with N̄ observations. The likelihood function is simply

ln LDT
N̄ (θ) =

N̄

∑
n=2

ln P (kn−1, kn; ∆, θ) ,

where P(k, l; ∆, θ) denotes the (k, l) element of the transition matrix induced by θ.

Other estimators for the model have been proposed. First, ABBE introduced a two-

step PML (pseudo maximum likelihood) estimator, which is similar in spirit to the CCP

estimator of Hotz and Miller (1993) for discrete time single agent models. More recently,

Blevins and Kim (2019) note that the process of obtaining the two-step PML estimator can

be iterated, in the spirit of Aguirregabiria and Mira (2007), to define a continuous time

nested pseudo likelihood (CTNPL) estimator for the model, which is more stable than

the discrete time counterpart. However, since the focus of this paper is identification of

the continuous time model given discrete time data, rather than estimation, we focus on

the simpler maximum likelihood estimator. This allows us to focus on the computational

properties of the model and to examine how estimates behave when the sampling frequency

of the data changes without concerns about two-step estimation error.
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5.2. Single Agent Renewal Model

Here, we generate data according to the single agent binary choice model described above.

The parameters of the model to be estimated are θ = (λ, γ, β, µ) which include the move

arrival rate λ, the rate of mileage increase γ, the mileage cost parameter β, and the engine

replacement cost µ. We fix the number of mileage states at K = 90 and the discount

rate at ρ = 0.05. The population parameters are (λ, γ, β, µ) = (1.0, 1.0,−3.0,−14.0). We

also report the cost ratio µ/β which, as is common in discrete choice, is more precisely

estimated in most specifications than β or µ individually.

M Sampling λ γ β µ µ/β

∞ DGP True 1.000 1.000 -3.000 -14.000 4.667

50 Continuous Mean 1.381 0.998 -3.031 -14.277 4.727

S.D. 0.961 0.012 0.301 1.106 0.279

50 ∆ = 1.00 Mean 1.411 1.006 -3.053 -14.303 4.701

S.D. 1.046 0.012 0.302 1.124 0.286

50 ∆ = 8.00 Mean 1.543 1.006 -3.105 -14.508 4.701

S.D. 1.269 0.013 0.371 1.301 0.359

200 Continuous Mean 1.129 1.000 -2.974 -13.974 4.705

S.D. 0.435 0.006 0.177 0.585 0.168

200 ∆ = 1.00 Mean 1.123 1.008 -2.995 -13.989 4.678

S.D. 0.441 0.006 0.179 0.603 0.163

200 ∆ = 8.00 Mean 1.276 1.008 -2.997 -14.049 4.696

S.D. 0.822 0.007 0.208 0.788 0.212

800 Continuous Mean 1.003 1.001 -3.010 -14.038 4.666

S.D. 0.092 0.003 0.088 0.294 0.059

800 ∆ = 1.00 Mean 0.999 1.009 -3.031 -14.055 4.639

S.D. 0.098 0.003 0.092 0.299 0.061

800 ∆ = 8.00 Mean 1.008 1.009 -3.027 -14.036 4.638

S.D. 0.188 0.003 0.099 0.321 0.088

3200 Continuous Mean 0.994 1.000 -2.998 -13.989 4.666

S.D. 0.055 0.002 0.040 0.132 0.031

3200 ∆ = 1.00 Mean 0.988 1.008 -3.018 -13.997 4.639

S.D. 0.054 0.002 0.040 0.136 0.031

3200 ∆ = 8.00 Mean 0.958 1.008 -3.028 -13.996 4.623

S.D. 0.078 0.002 0.049 0.162 0.042

The mean and standard deviation are reported for 100 replications under several sampling regimes. For each
replication, M markets were simulated over a fixed time interval [0, T] with T = 120.

Table 1. Single Agent Renewal Model Monte Carlo Results
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We use the full-solution maximum likelihood approach to estimate the model following

Rust (1987). The value functions are obtained through value function iteration for each

value of θ in an inner loop to within a tolerance of ε = 10−6 under the supremum norm. We

maximizing the likelihood function in an outer loop using the L-BFGS-B algorithm (Byrd,

Lu, and Nocedal, 1995; Zhu, Byrd, Lu, and Nocedal, 1997) with numerical derivatives

with step size h = 10−8. We estimate the model under several different sampling regimes

including full continuous-time data and discrete time data sampled at short and long

intervals ∆ = 1.0 and ∆ = 8.0.

We simulate data over the interval [0, T] with T = 120 for each of M markets, with M

varying from 50 to 3200. We simulated both continuous time data and discrete time data

with sampling intervals ∆ = 1.0 and ∆ = 8.0. For each specification, we report the mean

and standard deviation of the parameter estimates over 100 replications in Table 1. All

are parameters are estimated quite precisely and with little finite-sample bias. The loss of

precision from moving away from continuous time data is minimal at ∆ = 1.0 and more

noticeable at ∆ = 8.0.

5.3. Quality Ladder Model

Our second set of Monte Carlo experiments corresponds to the quality ladder model

described in Section 4. Table 2 summarizes the model specifications and computational

time required for value function iteration. In this table we consider models ranging from

N = 2 players and K = 56 states up to N = 30 players and K = 58, 433, 760 states. We

hold the number of possible quality levels fixed at ω̄ = 7, we set the quality of entrants

to ωe = 4, and we increase the market size (M̄) so that the average number of active

players (navg) grows with the total number of possible players (N). We also report K, the

number of states from the perspective of player i, which is the number of distinct (ωi, ω)

combinations in X.

The final column of Table 2 compares the computational time required (wall clock

time) for obtaining the value function across specifications. This step is necessary to either
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N ω̄ K M̄ navg Obtain V
2 7 56 0.40 1.77 0.15

4 7 840 0.60 3.52 0.27

6 7 5,544 0.75 5.27 0.65

8 7 24,024 0.85 7.02 3

10 7 80,080 0.95 8.78 10

12 7 222,768 1.05 10.49 30

14 7 542,640 1.15 12.27 79

16 7 1,193,808 1.20 13.97 199

18 7 2,422,728 1.25 15.75 422

20 7 4,604,600 1.30 17.47 882

22 7 8,288,280 1.35 19.29 1648

24 7 14,250,600 1.40 20.98 2964

26 7 23,560,992 1.45 22.74 6481

28 7 37,657,312 1.50 24.47 10804

30 7 58,433,760 1.55 26.24 17712

N denotes the number of players (including potential entrants), ω̄ denotes the number of quality levels, M̄
denotes the market size, K denotes the total number of distinct states, navg denotes the average number of
active firms, and ωavg denotes the average quality level of active firms. Computational times are wall clock

times using GNU Fortran 12.2 on a 2019 Mac Pro with a 2.5 GHz 28-Core Intel Xeon W processor.

Table 2. Quality Ladder Model Monte Carlo Specifications

generate a dataset or to simulate the model (e.g., to perform counterfactuals). We used

value function iteration where the stopping criterion is that the choice probabilities are

within a tolerance of ε = 10−8 in the supremum norm.

To put the computational times in perspective, Doraszelski and Judd (2012) noted that

it would take about one year to just solve for an equilibrium of a comparable9
14-player

game using the Pakes-McGuire algorithm. Similar computational times are reported in

Doraszelski and Pakes (2007). However, it takes just over one minute to solve the continuous-

time game with 14 players and 542,640 states. Even in the game with 30 players and over

58 million states, obtaining the value function took under 5 hours. We note that this would

be infeasible for full-solution estimation, but when estimating the model using two-step

methods, such as in ABBE or Blevins and Kim (2019), one may only need to carry out this

step once, after estimation, for simulating a counterfactual. Overall, these computational

9The times reported by Doraszelski and Judd (2012) are for a model with ω̄ = 9 but with no entry or exit,
which for a fixed value of N, is roughly comparable in terms of dimensionality to our model with ω̄ = 7,
which includes entry and exit.
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times suggest that a much larger class of problems can be estimated and simulated in the

continuous-time framework.

Table 3 summarizes the results of our Monte Carlo experiments. We estimate the

parameters (λ̄, γ, κ, η, µ) where λ̄ = Nλ is the sum of move arrival rates across players.

We do this so that the games are comparable under the same parameter values across

specifications as the number of firms increases. Because we estimate firm fixed costs µ, we

set the scrap value received upon exit equal to zero (φ = 0). The true parameter values,

which are also shown in the table, are (λ̄, γ, κ, η, µ) = (1.0, 0.4, 0.8, 6.0, 0.8).

N K Sampling λ̄ γ κ η µ

DGP True 1.000 0.400 0.800 6.000 0.800

2 56 Continuous Mean 1.000 0.399 0.800 6.048 0.799

S.D. 0.013 0.010 0.026 0.200 0.020

∆ = 1.0 Mean 1.063 0.400 0.824 6.063 0.836

S.D. 0.311 0.007 0.380 0.675 0.135

4 840 Continuous Mean 0.999 0.398 0.799 6.016 0.799

S.D. 0.011 0.013 0.024 0.176 0.016

∆ = 1.0 Mean 1.017 0.400 0.806 6.008 0.810

S.D. 0.144 0.007 0.222 0.401 0.054

6 5,544 Continuous Mean 1.000 0.397 0.802 6.036 0.799

S.D. 0.010 0.016 0.024 0.185 0.017

∆ = 1.0 Mean 0.999 0.400 0.790 5.997 0.801

S.D. 0.088 0.006 0.146 0.264 0.030

8 24,024 Continuous Mean 1.000 0.397 0.797 6.029 0.801

S.D. 0.010 0.016 0.022 0.191 0.017

∆ = 1.0 Mean 1.003 0.400 0.798 5.999 0.802

S.D. 0.077 0.006 0.125 0.222 0.028

10 80,080 Continuous Mean 0.999 0.398 0.800 6.044 0.800

S.D. 0.009 0.017 0.021 0.157 0.016

∆ = 1.0 Mean 0.994 0.400 0.784 5.973 0.800

S.D. 0.063 0.006 0.108 0.200 0.021

Table 3. Quality Ladder Model Monte Carlo Results

We first used samples containing N̄ = 10, 000 continuous time events. In this case we

observe the time of each event, the identity of the player, and the action chosen. For each

specification we also report results for estimation with discrete time data with a fixed
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sampling interval of ∆ = 1.0.10 In this case, we must calculate the matrix exponential

of the Q matrix at each trial value of θ. To do so, we use the uniformization algorithm

of Sherlock (2022). Because this matrix is high dimensional, but sparse, we adapted the

algorithm to use sparse matrix methods and we precomputed the locations of the non-zero

elements to improve the computational speed.

For each replication we used simulated annealing (Goffe, Ferrier, and Rogers, 1992,

1994) to maximize the log-likelihood function11 and used ε = 10−10 as the tolerance for

value function iteration. Because of the time required to complete many replications

of each specification, we limit our consideration to models up to N = 10 players and

K = 80, 080 states for the Monte Carlo experiments. Each replication involves an extensive

global parameter search and each parameter evaluation solves a full solution problem for

accuracy.12 Although this is computationally costly, it allows us to focus on identification,

computation, and estimation under time aggregation in a setting without additional tuning

parameters and two-step estimation error.

While, the estimates are accurate and precise in all cases, we can see that the precision

is decreased (standard errors are increased) due to the information lost with only discretely

sampled data. Although the standard errors are larger than those with continuous time

data, they are still reasonably small. Under this parameterization, we can that more

information is lost when the number of players is small. In this case the rate of move

arrivals for each player is λ = λ̄/N, so although the overall average number of events

over a given interval is the same in both models, the equilibrium choice probabilities are

such that firms choose to entry and exit more frequently when N is smaller. Hence, more

information is lost over an interval ∆ = 1.0 relative to continuous time sampling, where

10To see the effects of varying the discrete time sampling interval ∆, please refer to the single agent model
Monte Carlo experiments in the previous section.

11For simulated annealing, we set the initial temperature to 0.01. We used an exponential decay schedule
with parameter 0.70. The initial stepsizes were (1.0, 1.0, 1.0, 3.0, 1.0). The period for temperature reductions
was 20 and dwell time between step size adjustments was 10. The step size adjustment factor was 2.0 and
the function value tolerance, considering the previous three best values, was 10−3. This resulted in about
15,000–20,000 log likelihood function evaluations per replication.

12To ease the computational burden, we store up to 100 previous value functions and associated parameter
values. Then for each trial value of θ, we search for the closest (in Euclidean distance) previous parameter
values and use the associated value function as the starting value for value function iteration.
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the standard errors are relatively constant across N. This is not a general conclusion, but a

feature of this particular data generating process.

6. Conclusion

In this paper we have developed new results on the theoretical and econometric properties

of a generalized instance of the empirical framework introduced by Arcidiacono, Bayer,

Blevins, and Ellickson (2016) for continuous time dynamic discrete choice games. We

established equilibrium existence with heterogeneous players and state-dependent move

arrival rates, we developed more general conditions for identification with discrete time

data, we explored these results in the context of three canonical examples widely used in

applied work, and we examined the computational properties of the model as well as the

finite- and large-sample properties of estimates through a series of small- and large-scale

Monte Carlo experiments based on familiar models.

A. Proofs

Proof of Theorem 1. Given a collection of equilibrium best response probabilities {σi}N
i=1, we

can obtain a matrix expression for the value function Vi(σi). By Proposition 2 of ABBE, the

difference Vi,l(i,j,k)(σi)− Vi,l(i,j′,k)(σi) can be expressed as a function of payoffs and choice

probabilities σi and so we can write Ci as a function of only conditional choice probabilities

and payoffs (i.e., so that it no longer depends on the value function).

Note that we can write the value function in vector form as follows:

Vi(σi)

[(
ρi IK +

N

∑
m=1

Lm

)
− (Q0 − Q̃0)

]

= ui + Q̃0Vi(σi) + ∑
m ̸=i

LmΣm(σm)Vi(σi) + Li [Σi(σi)Vi(σi) + Ci(σi)] .
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Rearranging to collect terms involving Vi(σi) yields

Vi(σi)

[
ρi Ik +

N

∑
m=1

Lm[IK − Σm(σm)]− Q0

]
= ui + LiCi(σi).

The matrix in square brackets side is strictly diagonally dominant: for each m ρm > 0 by

Assumption 2, Lm is a diagonal matrix with strictly positive elements by Assumption 3,

Σm(σm) has elements in [0, 1] with row sums equal to one, and elements of Q0 satisfy

|qkk| = ∑l ̸=k |qkl | in each row k. Therefore, by the Levy-Desplanques theorem (Horn and

Johnson, 1985, Theorem 6.1.10) this matrix is nonsingular. ■

Proof of Theorem 2. Define the mapping Υ : [0, 1]N×J×K → [0, 1]N×J×K by stacking best

response probabilities:

Υijk(σ) =
∫

1
{

ε ij′k − ε ijk ≤ ψijk − ψij′k + Vi,l(i,j,k)(σ−i)− Vi,l(i,j′,k)(σ−i) ∀j′ ∈ Ji

}
f (ε ik) dε ik.

Υ is a continuous function from a compact space onto itself, recalling that Vik has the linear

representation of Theorem 1. By Brouwer’s theorem, it has a fixed point. The fixed point

probabilities imply Markov strategies that constitute a Markov perfect equilibrium. ■

Proof of Theorem 3. To establish generic identification of Q we can specialize the proof of

Theorem 1 of Blevins (2017) to the present setting, where Q is an intensity matrix with

row sums equal to zero and therefore has one real eigenvalue equal to zero and therefore

at most K − 1 complex eigenvalues. In this setting, P(∆) is observed and is the solution

to the system of differential equations in (9) while Q is a matrix of unknown parameters

with qkl for l ̸= k being the hazard of jumps from state k to state l. The unique solution

to this system is the transition matrix P(∆) = exp(∆Q), which has the same form as the

matrix B in equation (3) of Blevins (2017) and Q in this model is analogous to A in (1).

Therefore, identification of Q depends on establishing a unique solution to an equation

involving a matrix exponential of a parameter matrix. In this setting Q is known to have

row sums equal to zero, and therefore the vector of ones is a right eigenvector of Q with
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zero as the eigenvalue. In this case, the number of required restrictions on Q is reduced to

⌊(K − 1)/2⌋ because we know Q has at least one real eigenvalue.

Under the assumptions the number of distinct states in the model is K ≡ K0 ∏N
i=1 Ki.

Therefore, we will require at least
⌊K−1

2

⌋
linear restrictions of the form R vec(Q) = r where

R has full rank. We proceed by showing that the present model admits an intensity matrix

Q with a known sparsity pattern and so we can use the locations of zeros as homogeneous

restrictions, where r will be a vector of zeros.

Recall that each player has J choices, but j = 0 is a continuation choice. This results in

J − 1 non-zero off-diagonal elements per row of Q per player. There are at most K0 − 1

non-zero off-diagonal elements due to exogenous state changes by nature. The only

other non-zero elements of each row are the diagonal elements and therefore there are

at least K − N(J − 1)− (K0 − 1)− 1 = K0KN
1 − N(J − 1)− K0 zeros per row of Q. The

order condition we need to show is that the total number of zero restrictions is at least

⌊(K − 1)/2⌋. For simplicity, it will suffice to show that there are K/2 ≥ ⌊(K − 1)/2⌋

restrictions. Summing across rows, this condition is satisfied when (K0KN
1 )(K0KN

1 − N(J −

1)− K0) ≥ K0KN
1 /2. Simplifying yields the sufficient condition in (13).

The derivative of the left-hand-side of (13) with respect to K0 is KN
1 − 1. This value is

always non-negative, since K1 ≥ 1, and is strictly positive when K1 > 1. The derivative

with respect to K1 is NK0KN−1
1 . This value is always strictly positive since K0 ≥ 1 and

K1 ≥ 1. Finally, the derivative with respect to J is −N. ■
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