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Abstract. This paper develops a dynamic model of retail competition and uses it to study
the impact of the expansion of a new national competitor on the structure of urban markets. In
order to accommodate substantial heterogeneity (both observed and unobserved) across agents
and markets, the paper first develops a general framework for estimating and solving dynamic
discrete choice models in continuous time that is computationally light and readily applicable
to dynamic games. In the proposed framework, players face a standard dynamic discrete
choice problem at decision times that occur stochastically. The resulting stochastic-sequential
structure naturally admits the use of CCP methods for estimation and makes it possible to
compute counterfactual simulations for relatively high-dimensional games. The model and
method are applied to the retail grocery industry, into which Wal-Mart began rapidly expanding
in the early 1990s, eventually attaining a dominant position. We find that Wal-Mart’s expansion
into groceries came mostly at the expense of the large incumbent supermarket chains, rather
than the single-store outlets that bore the brunt of its earlier conquest of the broader general
merchandise sector. Instead, we find that independent grocers actually thrive when Wal-Mart
enters, leading to an overall reduction in market concentration. These competitive e�ects are
strongest in larger markets and those into which Wal-Mart expanded most rapidly, suggesting
a diminishing role of scale and a greater emphasis on di�erentiation in this previously mature
industry.
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1 Introduction

Beginning with the static equilibrium entry models of Bresnahan and Reiss (1991) and Berry
(1992), the modern empirical literature in industrial organization has sought to understand
the determinants of market structure and its impact on market power and the nature of
competition in oligopolistic industries. Recent papers have extended these models to permit
forward-looking behavior on the part of firms, as well as more complex forms of investment
and post-entry competition.1 Adding such dynamic considerations broadens the nature
of strategic interactions among firms and permits the study of a range of fundamentally
dynamic phenomena such as preemption, predation, and limit pricing.

Using existing methods, incorporating forward-looking behavior in models of strategic
interaction has been computationally costly, making it infeasible to compute the dynamic
equilibrium unless the state space is su�ciently small. As a result, empirical researchers
have often had to sacrifice much of the rich firm and market heterogeneity that can be
incorporated in static models in order to study the kinds of interesting strategic behavior
that can result when firms are forward-looking. With this trade-o� in mind, the central
goal of this paper is to provide a new approach for computing dynamic equilibrium models
of market competition that is much lighter computationally and, therefore, permits the
study of dynamic behavior without preventing researchers from incorporating dimensions
of heterogeneity (both observed and unobserved) that may be critical for understanding key
aspects of the nature of market competition.

At the outset, it is important to clarify that the key computational challenge in the
dynamic games literature is related to the computation of the dynamic equilibrium (e.g., for
use in counterfactuals) rather than estimation per se. In particular, since the seminal work
of Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994), conditional choice
probability (CCP) estimators have been applied to a wide range of dynamic discrete choice
problems including, more recently, simultaneous-move dynamic games (Aguirregabiria and
Mira, 2007, Bajari et al., 2007, Pesendorfer and Schmidt-Dengler, 2008, Pakes et al., 2007).
The key advantage of CCP estimation is that it eliminates the need to compute the full

Microeconomics Workshop, and the 2015 Econometric Society World Congress as well as seminar participants at
Chicago (Economics and Booth), Columbia, Duke, Harvard, Iowa, Johns Hopkins, Kentucky, London School of
Economics, Michigan, Northwestern, Ohio State (Economics and Fisher), Penn State, Rochester, Toronto, UBC
(Economics and Sauder), UC Davis, UCLA, Virginia, Western Ontario, Washington University (Olin), Wisconsin,
and Yale for useful comments. Timothy Schwuchow provided excellent research assistance.

1Building on earlier methodological contributions pioneered by Aguirregabiria and Mira (2007), Bajari,
Benkard, and Levin (2007), Pesendorfer and Schmidt-Dengler (2008), and Pakes, Ostrovsky, and Berry
(2007), empirical researchers have recently examined the impact of environmental regulations on entry,
investment and market power in the cement industry (Ryan, 2012), the e�ect of demand fluctuations in the
concrete industry (Collard-Wexler, 2013), and the impact of increased royalty fees on the variety of products
o�ered by commercial radio stations (Sweeting, 2013).
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solution of the dynamic game, allowing empirical researchers to estimate relatively high-
dimensional games, including many that can not be solved directly even once.

While knowledge of the parameters of many dynamic games can be informative, a key
limitation of the application of CCP estimation to high-dimensional problems is that it
is often impossible to compute counterfactual simulations of the estimated model. In the
context of games, the calculation of players’ expectations over all combinations of actions
of their rivals grows exponentially in the number of players, making it computationally
challenging to compute the equilibrium even in some relatively simple economic contexts.2

In this paper, we develop a characterization of a dynamic game in continuous time
that not only alleviates some of the computational di�culties associated with simultaneous
move games, but also links naturally with the existing literature on dynamic discrete choice
models and dynamic discrete games. The key feature of our approach is that players face
a standard dynamic discrete choice problem at decision times that occur stochastically.
The resulting stochastic-sequential structure naturally admits the use of CCP methods
for estimation and makes it possible to compute counterfactual simulations for relatively
high-dimensional games.

CCP estimation applied to our formulation of a dynamic game in continuous time has
several important advantages that carry over from the discrete time literature. Most di-
rectly, CCP estimation continues to eliminate the need to compute the full solution of
the model for estimation. Using our framework, the two-step estimators of Aguirregabiria
and Mira (2002, 2007), Bajari et al. (2007), Hotz et al. (1994), Pakes et al. (2007), and
Pesendorfer and Schmidt-Dengler (2008) can be applied in continuous time. In most em-
pirical studies, the equilibrium will only need to be computed a handful of times to perform
the counterfactual analyses conducted in the paper. In addition, it is straightforward to
account for unobserved heterogeneity with our framework by extending the methods of
Arcidiacono and Miller (2011). We demonstrate both of these advantages in our empiri-
cal application, applying the methods to a high dimensional problem while incorporating
unobserved heterogeneity, an important feature of the institutional setting.

We take advantage of this new formulation of a dynamic game in continuous time to
study the impact of a new national competitor on the structure of urban markets across the
United States. Specifically, we examine the impact of Wal-Mart’s rapid expansion into the
retail grocery industry from 1994–2006.3 In particular, we model the decisions of Wal-Mart
and its rivals over whether to operate grocery stores in a market and at what scale (i.e.,

2These limitations have led some to suggest alternatives to the Markov perfect equilibrium concept in
which firms condition on long run averages (regarding rivals’ states) instead of current information (Wein-
traub, Benkard, and Van Roy, 2008).

3Our methods have also been applied by Nevskaya and Albuquerque (2012) to online games, by Schiraldi,
Smith, and Takahasi (2012) to supermarkets, by Mazur (2014) to airlines, and by Cosman (2014) to bars in
Chicago.
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number of stores). We include the choices of Wal-Mart and up to seven competing chains,
as well as the single-store entry and exit decisions of several dozen fringe players. Each
geographic market is characterized by observed features—most importantly, the level and
growth rate of population—as well as unobserved heterogeneity that a�ects the relative
profitability of Wal-Mart, chain, and fringe stores in that market.

This characterization of the problem results in a dynamic game that has a rich error
structure (due to the unobserved heterogeneity) and an enormous number of states. We
estimate the model using CCP methods and solve counterfactually for the equilibrium under
several scenarios designed to measure how Wal-Mart’s entry into the retail grocery industry
a�ects the profitability and decision-making of rival chain and fringe firms.4

The estimates imply that Wal-Mart’s entry has a substantial impact on market structure
that is heterogeneous both across markets and firm types. In particular, we find that
Wal-Mart’s expansion came mostly at the expense of the large, incumbent grocery chains,
leading some to exit the market completely and sharply diminishing the scale of others. In
contrast, the small fringe firms actually thrive in the new market structure, suggesting a
greater ability to di�erentiate themselves (e.g., in terms of product o�erings or geography)
from both Wal-Mart and the remaining chains. Taken as a whole, market concentration is
sharply reduced by Wal-Mart’s entry in these markets.

Notably, this new, entrepreneurial activity is strongest in the larger markets and those
into which Wal-Mart expanded the fastest. In contrast, in another set of (primarily smaller,
Western) markets, Wal-Mart’s entry greatly concentrates the market in a way that closely
resembles the impact of its initial entry into discount retailing two decades earlier (Jia, 2008).
Wal-Mart’s entry is felt most directly by the fringe firms in these markets because, much
like the rural markets Wal-Mart focused on originally, chain stores were less established in
these markets to begin with. However, in the vast majority of grocery markets, the fringe
actually benefits from Wal-Mart’s presence.

A comparison of the results for specifications with and without unobserved heterogeneity
reveals that the inclusion of unobserved heterogeneity is essential for uncovering these qual-
itatively distinct economic implications of Wal-Mart’s entry across markets. While there
is still some variation across markets, the specification without unobserved heterogeneity
implies that Wal-Mart’s entry decreases market concentration in every market in the sample
and sharply understates the positive impact on small, independent stores, especially in the
larger markets. Taken as a whole, the results of our analysis demonstrate the importance
of incorporating substantial heterogeneity both across markets and firm types in estimating
dynamic games of retail entry and competition, thereby highlighting the advantage of com-

4Our counterfactual simulations involve calculating value functions at up to 157 million states in each of
205 markets, yet by taking advantage of the continuous time formulation this is computationally feasible.
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putationally light approaches for estimating and solving dynamic models with large state
spaces.

Our paper relates to the literature on both estimation of dynamic models in continuous
time as well as the empirical literature on entry in retail markets.5 Heckman and Singer
(1986) advocated using continuous time models for economic processes to avoid specifying
unnatural, fixed decision intervals for agents and because, unlike discrete time models, these
models are functionally invariant when applied to data recorded at di�erent time intervals.
In e�ect, agents need not move simultaneously and move times need not match the intervals
at which observations are recorded (e.g., annual or quarterly).

Continuous-time methods also have a long history in the search literature. Our ap-
proach is most closely connected to the literature in which job o�ers arrive at an exogenous
rate. Another vein of the search literature, however, assumes that individuals receive o�ers
according to their search intensity, e�ectively choosing a hazard rate for job o�ers. This is
the spirit of Doraszelski and Judd (2012) who first illustrated the computational advantages
of casting dynamic games into continuous time. Players in their model make simultaneous,
continuous decisions that control the hazard rate of state changes (e.g., choose an investment
hazard which results stochastically in a discrete productivity gain). In our paper, we take
advantage of the insight of Doraszelski and Judd (2012) regarding how continuous time, and
more specifically sequential state-to-state transitions, can reduce the computational burden
of dynamic games but reframe the problem in a way that (i) naturally parallels the discrete
time discrete choice literature, (ii) retains the computational advantages of CCP methods
in estimation, and (iii) circumvents issues of multiple equilibria in estimation.

The paper is structured as follows. Section 2 introduces our model in a simple single-
agent context in order to build intuition. Section 3 develops an alternative CCP represen-
tation of the value function which will facilitate two-step estimation of the model. Section 4
extends the model to the multi-agent setting. Concrete and canonical examples are provided
in both the single- and multi-agent cases. Section 5 establishes conditions for identification
of the model primitives and then Section 6 develops our estimators and discusses issues
associated with time aggregation. Section 7 introduces and describes the results of our
empirical analysis of the market structure of grocery store chains in geographically separate
U.S. markets. Section 8 concludes.

5On the empirical side, our paper is the first to estimate structurally the impact of Wal-Mart on both
chain and single-store firms. Ellickson and Grieco (2013) examine the impact of Wal-Mart on the structure
of the supermarket industry using descriptive methods from the treatment e�ects literature, while Basker
and Noel (2009) and Matsa (2011) look at its impact on prices and quality. Wal-Mart’s e�ect on discount
retail has been analyzed by Jia (2008), Holmes (2011), and Ellickson, Houghton, and Timmins (2013).
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2 Single-Agent Dynamic Discrete Choice Models

In this section, we introduce a dynamic discrete choice model of single-agent decision-
making in continuous time. The single-agent problem provides a simple setting in which to
describe the main features of our continuous time framework. We show how these extend
directly to a multi-agent context in the following section. We begin this section by laying
out the notation and structure of the model in a general manner. We then introduce an
example—the classic bus engine (capital) replacement model of Rust (1987)—to illustrate
how to apply our model in a familiar setting.

Consider a dynamic single-agent decision problem in which time is continuous, indexed
by t œ [0, Œ). The state of the model at any time t can be summarized by an element
k of some finite state space X = {1, . . . , K}. Two competing Poisson processes drive the
dynamics of the model. First, a finite-state Markov jump process on X with a K ◊ K

intensity matrix Q0 governs moves by nature—exogenous state changes that are not a
result of actions by the agent. The elements of Q0, denoted by q

kl

, are the rates at which
particular state transitions occur and are nonnegative and bounded. Second, a Poisson
arrival process with rate parameter ⁄ governs when the agent can move. When a move
arrival occurs, the agent chooses an action j from the discrete choice set A = {0, . . . , J ≠1}.

A finite-state Markov jump process can be characterized by an intensity matrix, which
contains the rate parameters for each possible state transition:

Q =

S

WWWWWU

q11 q12 . . . q1K

q21 q22 . . . q2K

...
... . . . ...

q
K1 q

K2 . . . q
KK

T

XXXXXV
.

For l ”= k

q
kl

= lim
hæ0

Pr (X
t+h

= l | X
t

= k)
h

is the hazard rate for transitions from state k to state l and

q
kk

= ≠
ÿ

l ”=k

q
kl

is the negative of the overall rate at which the process leaves state k. Transitions out of state
k follow an exponential distribution with rate parameter ≠q

kk

and, conditional on leaving
state k, the process transitions to l ”= k with probability q

kl

/
q

l

Õ ”=k

q
kl

Õ . For additional
details about Markov jump processes see, for example, Karlin and Taylor (1975, Section
4.8).
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We assume that the agent is forward-looking and discounts future payo�s at rate fl œ
(0, Œ). While in state k, the agent receives flow utility u

k

with |u
k

| < Œ. At rate ⁄

the agent makes a decision, choosing an action j œ A and receiving an additively separable
instantaneous payo� Â

jk

+Á
j

, where Â
jk

is the mean payo� (or cost) associated with making
choice j in state k, with |Â

jk

| < Œ, and Á
j

œ R is an instantaneous choice-specific payo�
shock which is observed by the agent but not by the econometrician.6 Let ‡

jk

denote the
probability that the agent optimally chooses choice j in state k. The agent’s choice may
result in a deterministic state change. Let l(j, k) denote the state that results upon making
choice j in state k. We use the convention that j = 0 is a costless continuation choice (i.e.,
Â0k

= 0 and l(0, k) = k for all k) and assume that the remaining actions are meaningfully
distinct (i.e., l(j, k) ”= l(jÕ, k) for jÕ ”= j for all k).

We can now specify the instantaneous Bellman equation, a recursive expression for the
value function V

k

which gives the present discounted value of all future payo�s obtained
from starting in some state k and behaving optimally in future periods:7

V
k

=
u

k

+
q

l ”=k

q
kl

V
l

+ ⁄ E max
j

{Â
jk

+ Á
j

+ V
l(j,k)}

fl +
q

l ”=k

q
kl

+ ⁄
. (1)

The denominator contains the discount factor plus the sum of the rates of all possible state
changes. The numerator is composed of the flow payo� for being in state k, the rate-
weighted values associated with exogenous state changes, and the expected instantaneous
and future value obtained when a move arrival occurs in state k. The expectation is with
respect to the joint distribution of Á = (Á0, . . . , Á

J≠1)€.
A policy rule is a function ” : X ◊RJ æ A which assigns to each state k and vector Á an

action from A. The optimal policy rule satisfies the following inequality condition, where
V

k

is the value function that solves the Bellman equation:

”(k, Á) = j ≈∆ Â
jk

+ Á
j

+ V
l(j,k) Ø Â

j

Õ
k

+ Á
j

Õ + V
l(jÕ

,k) ’jÕ œ A.

That is, when given the opportunity to choose an action, ” assigns the action that maximizes
the agent’s expected future discounted payo�. Thus, under the optimal policy rule, the
conditional choice probabilities are

‡
jk

= Pr[”(k, Á) = j | k].
6Although the choice-specific shocks Áj vary over time, we omit the t subscript for simplicity. We also

assume the distribution of Áj is identical across states, to avoid conditioning on k throughout, but allowing
it to depend on k does not present additional di�culties. Finally, as formalized in Section 4, we assume the
errors are i.i.d. with joint density f , finite first moments, and support RJ .

7To derive the Bellman equation, note that event probabilities over a small time increment h under the
Poisson assumption are proportional to h and the discount factor is 1/(1+flh), then take the limit as h æ 0.
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Note that the move arrival rate, ⁄, and the choice probabilities of the agent, ‡
jk

, also
imply a Markov jump process on X with intensity matrix Q1, where Q1 is a function of both
⁄ and ‡

jk

for all j and k. In particular, the hazard rate of action j in state k is simply ⁄‡
jk

,
the product of the move arrival rate and the choice probability. The choice probability ‡

jk

is thus the proportion of moves in state k that result in action j. Summing the individual
intensity matrices yields the aggregate intensity matrix Q = Q0 + Q1 of the compound
process, which fully characterizes the state transition dynamics of the model. This simple
and intuitive structure is especially important in extending the model to include multiple
agents, and in accommodating estimation with discrete time data. We discuss both of these
extensions in subsequent sections.

2.1 Example: A Single-Agent Renewal Model

Our first example is a simple single-agent renewal model, based on the bus engine replace-
ment problem analyzed by Rust (1987). The single state variable captures the accumulated
mileage of a bus engine. Let q

k1 and q
k2 denote the rates at which one- and two-unit

mileage increments occur, respectively. With each move arrival, the agent faces a binary
choice: replace the engine (j = 1) or continue (j = 0). If the agent replaces the engine,
the mileage is reset to the initial state k = 1 and the agent pays a replacement cost c. The
agent faces a cost minimization problem where the flow cost incurred in mileage state k is
represented by u

k

. The value function for mileage state k is

V
k

= u
k

+ q
k1V

k+1 + q
k2V

k+2 + ⁄ E max {V
k

+ Á0, V0 + c + Á1}
fl + q

k1 + q
k2 + ⁄

, (2)

where, in our general notation from before, the instantaneous payo�s are

Â
jk

=

Y
]

[
0, if j = 0,

c, if j = 1.

We will return to this example in the following section where we discuss a CCP represen-
tation of the value function.

3 CCP Representation

In traditional discrete time dynamic discrete choice models, agents typically make decisions
simultaneously at pre-determined intervals. In contrast, in our continuous time framework,
only a single decision or state change occurs at any given instant (almost surely) and moves
occur at random time intervals. Despite these key di�erences, our framework preserves the
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basic stochastic structure for decision-making from the discrete time literature and, as a
result, many of the insights of the literature following Hotz and Miller (1993) on expressing
value functions in terms of conditional choice probabilities (CCPs) apply here as well. In
particular, as the following proposition shows, it is possible to eliminate the value functions
on the right-hand side of (1), implying that no fixed point problem needs to be solved in
estimation. All proofs are given in the Appendix.

Proposition 1. The value function can be written as

V (‡) = [(fl + ⁄)I ≠ ⁄�(‡) ≠ Q0]≠1 [u + ⁄E(‡)],

where I is the K ◊ K identity matrix, �(‡) is the K ◊ K state transition matrix induced by
the choice probabilities ‡ due to actions by the agent, u is the K ◊ 1 vector of flow payo�s,
and E(‡) is the K ◊ 1 vector containing the ex-ante expected values of the instantaneous
payo�s in each state,

q
j

‡
jk

[Â
jk

+ e
jk

(‡)] where e
jk

(‡) is the expected value of Á
jk

given
that choice j is optimal,

1
‡

jk

⁄
Á

jk

· 1
Ó

Á
j

Õ
k

≠ Á
jk

Æ Â
jk

≠ Â
j

Õ
k

+ V
l(j,k)(‡) ≠ V

l(jÕ
,k)(‡) ’jÕÔ f(Á

k

) dÁ
k

.

The result above shows that the value function can be written as a linear function of the
payo�s, CCPs, and hazards for nature. This is analogous to the results of Aguirregabiria
and Mira (2002) for discrete time models.

While Proposition 1 can be applied to any setting that follows our stochastic-sequential
structure, computation is further simplified in some cases. Namely, when a certain finite
dependence condition holds, we can avoid calculating the K ◊ K matrix inverse in Propo-
sition 1 and instead express the value function in terms of CCPs for a limited number of
states.

To do so, we first derive two results that allow us to link value functions across states.
The first is essentially the continuous-time analog of Proposition 1 of Hotz and Miller (1993).
Using the CCPs we can derive relationships between the value functions associated with
any two states as long as both states are feasible from the initial state, should the agent
have the opportunity to move. The second result establishes a similar CCP representation
for the final term in the Bellman equation.

Proposition 2. There exists a function �1(j, jÕ, ‡
k

) such that for all j, jÕ œ A,

V
l(j,k) = V

l(jÕ
,k) + Â

j

Õ
k

≠ Â
jk

+ �1(j, jÕ, ‡
k

). (3)
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Proposition 3. There exists a function �2(jÕ, ‡
k

) such that for all jÕ œ A,

E max
j

Ó
Â

jk

+ Á
j

+ V
l(j,k)

Ô
= V

l(jÕ
,k) + Â

j

Õ
k

+ �2(jÕ, ‡
k

). (4)

Proposition 2 states that the valuations can be linked across states. The intuition for
Proposition 3 is that we can express the left hand side of (4) relative to V

l(jÕ
,k) + Â

j

Õ
k

for
an action jÕ of our choosing. By doing so, the terms inside the E max term will consist of
di�erences in value functions and instantaneous payo�s. These di�erences, as established
by Proposition 2, can be expressed as functions of conditional choice probabilities.

For a concrete example, consider the case where the Á’s follow the type I extreme value
distribution. In this case, closed form expressions exist for both �1 and �2:8

�1(j, jÕ, ‡
k

) = ln(‡
jk

) ≠ ln(‡
j

Õ
k

),

�2(jÕ, ‡
k

) = ≠ ln(‡
j

Õ
k

) + “,

where “ is Euler’s constant.
Importantly, Proposition 2 allows us to link value functions across many states. If in

state k the agent is able to move to kÕ by taking action jÕ, and is further able to move
from kÕ to kÕÕ by taking action jÕÕ, then it is possible to express V

k

as a function of V
k

ÕÕ by
substituting in the relevant relationships:

V
k

= V
k

Õ + Â
j

Õ
,k

+ �1(0, jÕ, ‡
k

)

= V
k

ÕÕ + Â
j

ÕÕ
,k

Õ + Â
j

Õ
,k

+ �1(0, jÕÕ, ‡
k

Õ) + �1(0, jÕ, ‡
k

).

By successively linking value functions to other value functions, there are classes of models
where the remaining value functions on the right hand side of (1) can be expressed in
terms of V

k

and conditional choice probabilities. Then, collecting all terms involving V
k

yields an expression for V
k

in terms of the flow payo� of state k and the conditional choice
probabilities. Since the latter can often be flexibly estimated directly from the data and the
former is an economic primitive, it is no longer necessary to solve a dynamic programming
problem to obtain the value functions. This is formalized in the following result.

Definition. A state kú is attainable from state k if there exists a sequence of actions from
k that result in state kú.

Proposition 4. For a given state k, suppose that for any state l ”= k with q
kl

> 0 there exists
a state kú that is attainable from both k and l. Then, there exists a function �

k

(Â, Q0, ‡)
8These expressions have closed forms in specific cases (e.g., multinomial logit or nested logit error struc-

tures) (Arcidiacono and Miller, 2011). This will be more di�cult in other settings.
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such that
flV

k

= u
k

+ �
k

(Â, Q0, ‡). (5)

The function �
k

for each state may depend on the model primitives Â and Q0 as well as
the CCPs, ‡. By restating the problem in this way, when the conditional choice probabilities
are available, no fixed point problem needs to be solved in order to obtain the value functions
and no K ◊K matrix need be stored or inverted. This can often lead to large computational
gains. We now provide an example showing how to apply these propositions.

3.1 Example: A Single-Agent Renewal Model

Recall the bus engine replacement example of Section 2.1, in which the value function was
characterized by (2). Applying Proposition 3 eliminates the third term in the numerator:

V
k

= u
k

+ q
k1V

k+1 + q
k2V

k+2 + ⁄�2(0, ‡
k

)
fl + q

k1 + q
k2

.

Although there is no direct link between the value function at k and the value functions
at k + 1 and k + 2, it is possible to link the two value functions through the replacement
decision. In particular, V

k

and V
k+1 can be expressed as follows:

V
k

= V0 + c + �1(0, 1, ‡
k

),

V
k+1 = V0 + c + �1(0, 1, ‡

k+1).

This implies that we can express V
k+1 in terms of V

k

:

V
k+1 = V

k

+ �1(0, 1, ‡
k+1) ≠ �1(0, 1, ‡

k

).

Using a similar expression for V
k+2, we obtain the function �

k

from Proposition 4:

�
k

(Â, Q0, ‡) = q
k1�1(0, 1, ‡

k+1) + q
k2�1(0, 1, ‡

k+2) ≠ (q
k1 + q

k2)�1(0, 1, ‡
k

) + ⁄�2(0, ‡
k

).

This example illustrates one of the benefits of continuous time over discrete time when
using conditional choice probabilities. In particular, it is possible to write the value function
directly in terms of CCPs in the continuous time framework without di�erencing with
respect to a particular choice. As a result, as illustrated above, we only need to estimate
replacement probabilities for a series of states k, k + 1, and k + 2 for any given k. In
contrast, discrete time renewal problems require di�erencing, as illustrated by Arcidiacono
and Miller (2011). This means that accurate estimates of the conditional probability of
replacing the engine at very low mileages are needed for CCP estimation. Because these
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are low probability events, such estimates will likely depend heavily on the smoothing
parameters or functional forms used to mitigate the associated small sample problems.

4 Dynamic Discrete Games

The potential advantages of modeling decisions using a continuous time framework are par-
ticularly salient in games, where the state space is often enormous. Working in continuous
time highlights aspects of strategic interaction that are muted by discrete time (e.g., first-
mover advantage) and mitigates unnatural implications that can arise from simultaneity
(e.g., ex post regret). In fact, a number of recent papers in the empirical games literature
(e.g., Einav, 2010, Schmidt-Dengler, 2006) have adopted a sequential structure for decision-
making to accommodate the underlying economic theory associated with their settings.

Extending the single-agent model of Section 2 to the case of dynamic discrete games
with many players is simply a matter of modifying the intensity matrix governing the
state transitions to incorporate players’ beliefs regarding the future actions of their rivals.
We begin this section by describing the structure of the model, followed by properties of
equilibrium strategies and beliefs. We then show how to apply the CCP representation
results of Section 3 in the context of dynamic games.

Suppose there are N players indexed by i = 1, . . . , N . As before, the state space X
is finite with K elements. This is without loss of generality, since each of these elements
may be regarded as indices of elements in a higher-dimensional, but finite, space of firm-
market-specific state vectors. Player i’s choice set in state k is A

ik

. For simplicity, we
consider the case where each player has J actions in all states: A

ik

= {0, . . . , J ≠ 1} for
all i and k. We index the remaining model primitives by i, including the flow payo�s in
state k, u

ik

, instantaneous payo�s, Â
ijk

, and choice probabilities, ‡
ijk

. Let l(i, j, k) denote
the continuation state that arises after player i makes choice j in state k. We assume that
players share a common discount rate fl.

Although it is still su�cient to have only a single jump process on X , with some intensity
matrix Q0, to capture moves by nature, there are now N independent, competing Poisson
processes with rate ⁄ generating move arrivals for each of the N players.9 The next event
to occur is determined by the earliest arrival of one of these N + 1 processes.

Let Î
i

denote player i’s beliefs regarding the actions of rival players, given by a collection
of (N ≠ 1) ◊ J ◊ K probabilities Î

imjk

for each rival player m ”= i, state k, and choice j.
Applying Bellman’s principal of optimality (Bellman, 1957), the value function for an active

9For simplicity, we assume the move arrival rates are equal for each firm.
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player i in state k can be defined recursively as:

V
ik

(Î
i

) =
u

ik

+
q

l ”=k

q
kl

V
il

(Î
i

) +
q

m”=i

⁄
q

j

Î
imjk

V
i,l(m,j,k)(Îi

) + ⁄ E max
j

Ó
Â

ijk

+ Á
ij

+ V
i,l(i,j,k)(Îi

)
Ô

fl +
q

l ”=k

q
kl

+ N⁄
.

(6)
The denominator of this expression the sum of the discount factor and the rates of exogenous
state changes and moves by players. The numerator is best understood by looking at each
term separately. The first term is the flow payo� that accrues to firm i each instant the
model remains in state k. Next, we have a sum over possible exogenous state changes,
weighted by the rates at which those changes occur. The third term is a sum over the rate-
weighted state changes that could result due to the action of a rival firm. The final term
is the rate-weighted continuation value that occurs when the agent moves and optimally
makes a discrete choice.

For dynamic games, we work under assumptions that generalize those used above for
single agent models and largely mirror the standard assumptions used in discrete time.

Assumption 1 (Discrete States). The state space is finite: K = |X | < Œ.

Assumption 2 (Bounded Rates and Payo�s). The discount rate fl, move arrival rate,
rates of state changes due to nature, and payo�s are all bounded for all i = 1, . . . N ,
j = 0, . . . , J ≠ 1, k = 1, . . . , K, l = 1, . . . , K with l ”= k: (a) 0 < fl < Œ, (b) 0 < ⁄ < Œ, (c)
0 Æ q

kl

< Œ, (d) |u
ik

| < Œ, and (e) |Â
ijk

| < Œ.

Assumption 3 (Additive Separability). For each player i and in each state k the instan-
taneous payo� associated with choice j is additively separable as Â

ijk

+ Á
ijk

.

Assumption 4 (Distinct Actions). For all i = 1, . . . , N and k = 1, . . . , K, the continuation
state function l(i, j, k) and the choice-specific payo�s Â

ijk

satisfy the following two proper-
ties: (a) choice j = 0 is a costless continuation choice with l(i, j, k) = k and Â

ijk

= 0, and
(b) all choices j are meaningfully distinct in the sense that the continuation states di�er:
l(i, j, k) ”= l(i, jÕ, k) for all j = 0, . . . , J ≠ 1 and jÕ ”= j.

Assumption 5 (Private Information). The errors Á
ik

are i.i.d. over time and across players
with joint distribution F which is absolutely continuous with respect to Lebesgue measure
(with joint density f), has finite first moments, and has support equal to RJ .

Following Maskin and Tirole (2001), we focus on Markov perfect equilibria in pure
strategies, as is standard in the discrete-time games literature. A Markov strategy for
player i is a mapping which assigns an action from A

ik

to each state (k, Á
i

) œ X ◊ RJ .
Focusing on Markov strategies eliminates the need to condition on the full history of play.
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Given beliefs for each player, {Î1, . . . , Î
N

}, and a collection of model primitives, a Markov
strategy for player i is a best response if

”
i

(k, Á
i

; Î
i

) = j ≈∆ Â
ijk

+ Á
ij

+ V
i,l(i,j,k)(Îi

) Ø Â
ij

Õ
k

+ Á
ij

Õ + V
i,l(i,jÕ

,k)(Îi

) ’jÕ œ A
ik

.

Then, given the distribution of choice-specific shocks, each Markov strategy ”
i

implies re-
sponse probabilities for each choice in each state:

‡
ijk

= Pr [”
i

(k, Á
i

; Î
i

) = j | k] . (7)

Definition. A collection of Markov strategies {”1, . . . , ”
N

} and beliefs {Î1, . . . , Î
N

} is a
Markov perfect equilibrium if for all i:

1. ”
i

(k, Á
i

) is a best response given beliefs Î
i

, for all k and almost every Á
i

;

2. for all players m ”= i, the beliefs Î
mi

are consistent with the best response probabilities
implied by ”

i

, for each j and k.

Following Milgrom and Weber (1985) and Aguirregabiria and Mira (2007), we can char-
acterize Markov perfect equilibria in probability space, rather than in terms of pure Markov
strategies, as a collection of equilibrium best response probabilities {‡1, . . . , ‡

N

} where each
probability in ‡

i

is a best response given beliefs ‡≠i

.
In particular, equilibrium conditional choice probabilities are fixed points to the best

response probability mapping, which defines a continuous function from [0, 1]N◊J◊K onto
itself. Existence of an equilibrium then follows from Brouwer’s Theorem, as established by
the following proposition.

Proposition 5. If Assumptions 1–5 hold, then a Markov perfect equilibrium exists.

4.1 CCP Representation

As in single-agent models, the value function for any player i in the multi-player case can be
expressed in terms of reduced-form CCPs and hazards. The following proposition formalizes
this and generalizes Proposition 1 to the multi-player setting.

Proposition 6. If Assumptions 1–5 hold, then for each player i

V
i

(‡) =
C

(fl + N⁄) I ≠
Nÿ

m=1
⁄�

m

(‡
m

) ≠ Q0

D≠1

[u
i

+ ⁄E
i

(‡)] (8)

where �
m

(‡
m

) is the K ◊K state transition matrix induced by the actions of player m given
the choice probabilities ‡

m

and where E
i

(‡) is a K ◊ 1 vector where each element k is the
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ex-ante expected value of the choice-specific payo� in state k,
q

j

‡
ijk

[Â
ijk

+ e
ijk

(‡)] where
e

ijk

(‡) is the expected value of Á
ijk

given that choice j is optimal,

1
‡

ijk

⁄
Á

ijk

· 1
Ó

Á
ij

Õ
k

≠ Á
ijk

Æ Â
ijk

≠ Â
ij

Õ
k

+ V
i,l(i,j,k)(‡) ≠ V

i,l(i,jÕ
,k)(‡) ’jÕÔ f(Á

ik

) dÁ
ik

.

This representation mirrors those of Aguirregabiria and Mira (2007) and Pesendorfer
and Schmidt-Dengler (2008) in discrete time and forms the basis of a two-step estimator
discussed in the next section.

We further note that the propositions in Section 3 apply to games as well, though the
attainability condition may be more di�cult to satisfy. Namely, it is possible to eliminate
the value functions in the fourth term of the numerator of (6) using Proposition 3:

V
ik

=
u

ik

+
q

l ”=k

q
kl

V
il

+
q

m”=i

⁄
q

j

‡
mjk

V
i,l(m,j,k) + ⁄�2(0, ‡

ik

)
fl +

q
l ”=k

q
kl

+ (N ≠ 1)⁄ . (9)

Eliminating the other value functions, however, is problematic as each player may only be
able to move the process to some subset of the state space via a unilateral action, since they
only have direct control over their own state.

There are important classes of models, however, for which the remaining value functions
can be eliminated. In models with a terminal choice, such as a firm permanently exiting a
market, the value function for the terminal choice does not include other value functions.
Similarly, in models in which a player’s action can reset the game for all players, the value
function for reset can be expressed in terms of appropriate CCPs.

Note that in either the terminal or reset case, there only has to be an attainable scenario
where the agent can execute the terminal or reset action. To see this, consider a game
amongst retailers where firms compete by opening and closing stores. Given a move arrival,
a firm can build a store, j = 1, do nothing, j = 0, or, if the agent has at least one store,
close a store, j = ≠1. Once a firm has no stores, it makes no further choices. Let c denote
the scrap value of closing a store.

Suppose that the economy-wide state vector associated with state k is xk = (xk

1, . . . , xk

N

),
which contains the store counts of all firms in the market (including potential entrants,
namely firms with zero stores). Let lú(i, k, xÕ

i

) denote the index of the state that is equal
to the initial state xk, but where firm i has xÕ

i

stores instead of xk

i

. Applying Proposition 2
and normalizing the value of zero stores to zero, we can express V

ik

as:

V
ik

=
x

k
iÿ

x

Õ
i=1

�1
1
0, ≠1, ‡

i,l

ú(i,k,x

Õ
i)

2
+ xk

i

c. (10)
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Since (10) holds for all k, we can use the value of fully exiting to link value functions
for any pair of states. Namely, linking the value functions on the right hand side of (9) to
V

ik

and solving for V
ik

yields:

flV
ik

= u
ik

+ ⁄�2(0, ‡
ik

)

+ ⁄
ÿ

m”=i

‡
m,≠1,k

x

k
iÿ

x

Õ
i=1

Ë
�1

1
0, ≠1, ‡

i,l

ú(i,l(m,≠1,k),xÕ
i)

2
≠ �1

1
0, ≠1, ‡

i,l

ú(i,k,x

Õ
i)

2È

+ ⁄
ÿ

m”=i

‡
m,1,k

x

k
iÿ

x

Õ
i=1

Ë
�1

1
0, ≠1, ‡

i,l

ú(i,l(m,1,k),xÕ
i)

2
≠ �1

1
0, ≠1, ‡

i,l

ú(i,k,x

Õ
i)

2È
.

Once again, no fixed point calculation is required to express the full value function, a
simplification that is especially powerful in the context of high-dimensional discrete games.

5 Identification

The structural model primitives are (Â1, . . . , Â
N

, u1, . . . , u
N

, F, fl, Q0). Following Magnac
and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2008), and several others, we as-
sume that the distribution of idiosyncratic errors, F , and the discount rate, fl, are known
and establish conditions for the identification of the remaining primitives. This proceeds
in two steps. First, we establish that the aggregate intensity matrix Q for the continuous
time model, and hence nature’s intensity matrix Q0, are identified even with only discrete
time data. To do so, we exploit a priori restrictions on Q that arise from the construction
of the model itself. Second, we show that knowledge of Q allows us to identify the re-
maining structural primitives—the flow payo�s (u1, . . . , u

N

) and the instantaneous payo�s
(Â1, . . . , Â

N

)—under conditions that are similar to those used for identification of discrete
time models (e.g., payo� exclusion restrictions).

We follow most papers in the literature on two-step estimation (e.g., Bajari et al., 2007,
Aguirregabiria and Mira, 2007) and assume that a single Markov perfect equilibrium is
played in each state k and that all players expect the same equilibrium to be played at
all times both in and out of sample. This assumption is analogous to similar assumptions
commonly used in two-step estimation of discrete time models (see Aguirregabiria and Mira
(2010) for a survey).

Assumption 6 (Multiple Equilibria). (a) In each state k = 1, . . . , K, a single Markov
perfect equilibrium is played which results in an intensity matrix Q. (b) The distribution
of state transitions at any point t is consistent with the intensity matrix Q.

The purpose of this assumption is to guarantee that we can consistently estimate either
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the state-to-state transition probability matrix based on discrete time data observed at fixed
intervals of length �,10 or the aggregate intensity matrix itself, Q, based on continuous
time observations. We first discuss the choice of the rate of move arrivals before turning to
identification of the intensity matrix and then the structural primitives.

5.1 Uniformization and the Rate of Move Arrivals

In discrete time models, the lengths of decision periods in the structural model are not known
but are chosen by the researcher (usually to match the data sampling period). Because
agents can choose to do nothing each period, the choice probabilities adjust to reflect the
chosen time period. For example, the probability that a firm does not enter a market using
quarterly data would be larger than with annual data (given the same intrinsic rates).

In a similar way, the rate of move arrivals in our model, ⁄, is not a parameter of
interest but is chosen by the researcher. Introducing ⁄ while giving players a continuation
choice (j = 0) is related to a technique known as uniformization in the stochastic process
literature (see e.g., Puterman, 2005, Ch. 11). In our case, it also has a convenient behavioral
interpretation and allows us to maintain a multinomial choice structure that is analogous
to discrete time models.

In a generic, stationary Markov jump process the rate at which the process leaves state
k may in general di�er across states. However, the same process has an equivalent repre-
sentation in terms of a state-independent Poisson “clock process” with a su�ciently large
common rate “ that governs potential transitions out of each state and an embedded Markov
chain governing the actual state transitions. In this representation, with each arrival of the
Poisson process the probability of remaining in the same state can be nonzero.

In our setting, the embedded Markov chain associated with moves by agents is a ma-
trix containing the relevant conditional choice probabilities. We can also rewrite the state
transition rates for nature in a similar manner. Namely, let “ be the fastest transition rate

“ = N⁄ + max
k

ÿ

l ”=k

q
kl

.

If we consider “ to be the overall move arrival rate for players, including nature, and if
Q =

q
N

i=0 Q
i

is the aggregate intensity matrix with elements Ê
kl

, then at each arrival of
10Extending this to cases with irregular time intervals is straightforward and also helps with identification.

See Blevins (2016) for a summary of results on identification of models with irregularly spaced observations
including Cuthbert (1973), Singer and Spilerman (1976), and Hansen and Sargent (1983).
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the Poisson process with rate “ the probability of the state transitioning from k to l is

p
kl

=

Y
]

[
Ê

kl

/“ if l ”= k,

1 ≠ q
k ”=l

Ê
kl

/“ if l = k.

In other words, given Q we can construct an embedded Markov chain with transition matrix
I + 1

“

Q that characterizes the state transitions for each arrival of the Poisson process.11

In the context of our dynamic discrete choice model, uniformization with a fixed rate
“ is analogous to fixing the overall rate of decisions, ⁄, while allowing the choice j = 0 to
a continuation decision. Choice probabilities and other model implications should then be
interpreted relative to the choice of ⁄ and the unit of time. In our application we set ⁄ = 1
which implies that agents make decisions on average once per unit of time (e.g., one year)
without restricting the actual realized move times to a fixed interval.

5.2 Identification of Q

With continuous-time data, identification and estimation of the intensity matrix for finite-
state Markov jump processes is straightforward and well-established (Billingsley, 1961). On
the other hand, when a continuous-time process is only sampled at discrete points in time,
the parameters of the underlying continuous-time model may not be uniquely identified.12

This is known as the aliasing problem and has been studied by many authors in the context
of continuous-time vector autoregression models (Phillips, 1973, Hansen and Sargent, 1983,
Geweke, 1978, Kessler and Rahbek, 2004, McCrorie, 2003, Blevins, 2016). In the present
model, the concern is that there may be multiple Q matrices which give rise to the same
transition probability matrix P (�).

Formally, let P
kl

(�) denote the probability that the system has transitioned to state
l after a period of length � given that it was initially in state k, given the aggregate
intensity matrix Q. The corresponding matrix of these probabilities, P (�) = (P

kl

(�)), is
11To see the equivalence, let Q̃ = (Ễkl) denote the intensity matrix after uniformization. For transitions

from k to l ”= k we have Ễkl = “( Êkl
“ ) = Êkl and for transitions back to k we have Ễkk = ≠“ + “pkk =

≠
q

l”=k
Êkl = Êkk.

12There is an analogous identification issue for discrete-time models which is hidden by the usual assump-
tion that the frequency of moves is known and equal to the sampling frequency. Suppose to the contrary
that there is a fixed move interval of length ” in the model which may be di�erent from the observation
interval �. In practice, researchers typically assume (implicitly) that ” = � for some specific unit of time
(e.g., one quarter). This assumption is convenient, but masks the identification problem, which requires
that there exist a unique matrix root P0 of the discrete-time aggregation equation P �/”

0 = P (�). In general
there may be multiple such matrices (Gantmacher, 1959, Singer and Spilerman, 1976), but P0 is trivially
unique under the usual assumption that ” = �.

18



the transition matrix, which is the matrix exponential of �Q:

P (�) = exp(�Q) =
Œÿ

j=0

(�Q)j

j! . (11)

These transition probabilities account for all paths of intermediate jumps to other states
between observed states (including possibly no jumps at all). We establish conditions under
which there is a unique Q matrix that is consistent both with the model and (11).13

The theoretical model restricts Q to a lower-dimensional subspace since it is sparse
and must satisfy certain within-row and across-row restrictions. We show that this sparse
structure leads to unique identification of Q by establishing identification conditions based
on linear restrictions on the Q matrix of the form R vec(Q) = r.14 The following proposition
establishes that there are su�ciently many restrictions of full rank to identify Q in a broad
class of continuous time discrete choice games.

Proposition 7. Suppose that Assumptions 1–6 hold and let xk = (xk

1, . . . , xk

N

) be the vector
of player-specific states corresponding to state k, where each component xk

i

œ X
i

can only be
a�ected by the action of player i. Suppose that there are |X

i

| = Ÿ possible states per player,
J actions per player, and N Ø 2 players. Suppose that Q has distinct eigenvalues that do
not di�er by an integer multiple of 2fii/�. Then Q is generically identified15 from P (�) if
J Æ Ÿ

N +2N≠1
2N

.

To better understand the conclusion, we consider some common cases. First, in any
non-trivial binary choice game Q is identified. That is, if J = 2 and Ÿ Ø 2 then Q is
identified for any value of N . Similarly, for J = 3 choices and Ÿ Ø 3, then Q is identified
for any N . Finally, for any N Ø 1 and Ÿ > 1, the model is identified as long as J is not
too large, where the upper bound on J is increasing exponentially in N . The result can
be extended to cases with exogenous state variables and where the number of endogenous
states per player, Ÿ, may di�er across players and states.

For identification purposes, we assume that given the aggregate intensity matrix Q we
can determine the player-specific intensity matrices Q

i

for i = 0, . . . , N .

Assumption 7. The mapping Q æ {Q0, Q1, . . . , Q
N

} is known.
13A related issue is the embeddability problem: could P (�) have been generated by a Markov jump

process with intensity matrix Q? We assume throughout that the model is well-specified and therefore,
such an intensity matrix Q exists. Singer and Spilerman (1976) provide several necessary conditions for
embeddability involving testable conditions on the determinant and eigenvalues of P (�). This problem was
first proposed by Elfving (1937). Kingman (1962) derived the set of embeddable processes with K = 2 and
Johansen (1974) gave an explicit description of the set for K = 3.

14For the K ◊ K matrix Q = (qkl), vec(Q) is the vector obtained by stacking the columns of Q.
15We say Q is generically identified if it is identified except possibly for a measure zero set of population

Q matrices. See Phillips (1973, p. 357) for a detailed discussion of generic identification in a 3 ◊ 3 model.
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This assumption is satisfied in applications where firms cannot change each other’s state
variables and where actions by nature can be distinguished from the actions of firms. It
holds trivially in the single-agent example above and in our empirical application, where
the Q matrix is sparse and each non-zero o�-diagonal element corresponds to a single
matrix Q

i

. A su�cient condition in general is that the continuation states resulting from
the actions of di�erent players are distinct: for all players i and m ”= i and all states k,
{l(i, j, k) : j = 1, . . . , J ≠ 1} fl {l(m, j, k) : j = 1, . . . , J ≠ 1} = ?.

5.3 Identification of the Instantaneous and Flow Payo�s

After identifying Q, and hence the CCPs ‡, identification of the instantaneous and flow
payo�s can proceed in a similar manner as in discrete time models. Let V

i

= (V
i1, . . . , V

iK

)€

and u
i

= (u
i1, . . . , u

iK

)€ denote the K-vectors of valuations and flow payo�s for player i

in each state. Let Â
ij

= (Â
ij1, . . . , Â

ijK

)€ denote the K-vector of instantaneous payo�s for
player i making choice j in each state and let Â

i

= (Â€
i,1, . . . , Â€

i,J≠1)€.
Using Proposition 2 and Assumption 4, for the baseline choice jÕ = 0 the di�erences

v
ijk

© Â
ijk

+ V
i,l(i,j,k) ≠ V

ik

are identified from the CCPs and Q0 for all players i, choices
j, and states k. Letting v

ij

= (v
ij1, . . . , v

ijK

)€, we can stack equations across states k to
write v

ij

= Â
ij

+ (S
ij

≠ I
K

)V
i

, where S
ij

is the K ◊ K permutation matrix induced by the
continuation state function l(i, j, ·) and I

K

is the K ◊ K identity matrix. Finally, we can
use the linear representation established in Proposition 6 to write V

i

in terms of u
i

and
identified quantities as V

i

= �≠1
i

(u
i

+ ⁄E
i

), where �
i

is the first matrix in square brackets
in (8) and we have dropped the explicit dependence on ‡ and Q0. The resulting system of
K equations for player i and choice j is v

ij

= Â
ij

+ (S
ij

≠ I
K

)�≠1
i

(u
i

+ ⁄E
i

).
Define S̃

ij

= (S
ij

≠ I
K

)�≠1
i

and stack the equations for all choices j = 1, . . . , J ≠ 1 to
obtain a system of equations for the payo�s Â

i

and u
i

:
S

WWWWWU

I
K

0 . . . 0 S̃
i,1

0 I
K

. . . 0 S̃
i,2

...
... . . . ...

...
0 0 . . . I

K

S̃
i,J≠1

T

XXXXXV

S

WWWWWU

Â
i,1
...

Â
i,J≠1

u
i

T

XXXXXV
=

S

WWWWWU

v
i,1 ≠ ⁄S̃

i,1E
i

v
i,1 ≠ ⁄S̃

i,2E
i

...
v

i,J≠1 ≠ ⁄S̃
i,J≠1E

i

T

XXXXXV
,

or more simply X
i

C
Â

i

u
i

D

= y
i

, where the matrix X
i

and vector y
i

are defined accordingly.

There are JK unknown payo�s but X
i

only has (J ≠ 1)K rows. We can complete the
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system with at least K additional linear restrictions on Â
i

and u
i

of the form

R
i

C
Â

i

u
i

D

= r
i

, (12)

where R
i

and r
i

have at least K rows, each representing a restriction, and where R
i

has
JK columns, each corresponding to an element of Â

i

or u
i

. Then the full system is
C
X

i

R
i

D C
Â

i

u
i

D

=
C
y

i

r
i

D

and if
Ë

Xi
Ri

È
has full column rank then Â

i

and u
i

are identified.16

Proposition 8. If Assumptions 1–7 hold, then for each player i the (J ≠ 1)K ◊ JK matrix
X

i

has full rank. Furthermore, if for player i there exist restrictions on Â
i

and u
i

as in (12)
and if the matrix

Ë
Xi
Ri

È
has rank JK, then Â

i

and u
i

are identified.

Examples of appropriate restrictions include states where the continuation values are
known, for example, if u

ik

= 0 when a firm has permanently exited. This can be represented
by the matrix R

i

= [ 0 ... 0 1 0 ... 0 ] with r
i

= 0, where the single nonzero element corresponds
to u

ik

. Payo� exclusion or exchangeability restrictions of the form u
ik

= u
ik

Õ for kÕ ”= k

may also be used, for example, where k and kÕ are two states that di�er only by a rival-
specific state and are payo�-equivalent to firm i. This can be represented by a matrix
R

i

= [ 0 ... 0 1 0 ... 0 ≠1 0 ... 0 ] with r
i

= 0, where the 1 and ≠1 elements correspond to u
ik

and u
ik

Õ respectively. Finally, states where the instantaneous payo�s are the same can
provide restrictions, for example, if entry costs or scrap values are constant across states
implying Â

ijk

≠ Â
ijk

Õ = 0 for all i, some choice j, all states k and kÕ. Recall that in the
single-agent renewal example, the replacement cost did not depend on the mileage state.
These restrictions could be represented by the (K ≠ 1) ◊ JK matrix

R
i

=

S

WWWU

1 · · · 0 ≠1 0 · · · 0
... . . . ... ≠1

... . . . ...
0 · · · 1 ≠1 0 · · · 0

T

XXXV

with r
i

=
Ë
0 · · · 0

È€
. This alone yields K ≠ 1 linearly independent restrictions. In our

empirical application in Section 7, we make use of restrictions of all three types mentioned
16Because payo�s in our model depend on rival actions only through the state, the number of required

restrictions for a game with N players is only linear in N . In discrete time, simultaneous-move models the
payo�s depend separately on the state and the actions of all N players, so the number of required restrictions
is exponential in N (Pesendorfer and Schmidt-Dengler, 2008).
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above: permanent exit, exchangeability, and constant entry costs and scrap values.

6 Estimation

We now turn to estimation. Methods that solve for the value function directly and use
it to obtain the implied choice probabilities for estimation are referred to as full-solution
methods.17 CCP-based estimation methods, on the other hand, use two steps: CCPs
are estimated in a first step and used to approximate the value function in a closed-form
inversion or simulation step.18 The approximate value function is then used in the likelihood
function or the GMM criterion function to estimate the structural parameters.

Single-agent applications of our model may be estimated using full-solution methods, but
in the rest of this section we focus on describing the two-step estimators. We begin with the
simplest case in which continuous-time data is available. Next, since data is often reported
only at discrete intervals, we next show how our methods can be applied to discrete time
data. We then extend the methods to incorporate permanent unobserved heterogeneity.
We conclude the section with a comparison of continuous time and discrete time methods.

6.1 Two-Step Estimation with Continuous Time Data

As discussed in Section 3, it is possible to express di�erences in continuous time value func-
tions as functions of the conditional choice probabilities. These expressions can sometimes
be used in such a way that solving the nested fixed point problem is unnecessary. In this
section, we show how two-step methods apply in estimation, linking reduced form hazards
to conditional choice probabilities.

Here we consider a dataset of observations {k
mn

, t
mn

: m = 1, . . . , M, n = 1, . . . , T
m

}
sampled in continuous time over the interval [0, T ] where k

mn

is the state immediately prior
to the n-th state change in market m and t

mn

is the time of the state change.

Step 1: Estimating the Reduced-Form Hazards In Step 1, one estimates the hazards
of actions and state changes nonparametrically. For example, these hazards can be estimated
by maximum likelihood. Let h

ijk

= ⁄‡
ijk

denote the hazard for an active player i choosing
action j in state k and let

h = (q12, q13, . . . , q
K≠1,K

, ⁄‡111, . . . , ⁄‡1Jk

, . . . ⁄‡
N11, . . . , ⁄‡

NJK

) (13)
17The nested fixed point (NFXP) algorithm of Rust (1987), which uses value function iteration inside of

an optimization routine that maximizes the likelihood, is the classic example of a full-solution method.
18These methods were pioneered by Hotz and Miller (1993) and Hotz et al. (1994) and later extended by

Aguirregabiria and Mira (2002, 2007), Bajari et al. (2007), Pesendorfer and Schmidt-Dengler (2008), Pakes
et al. (2007), and Arcidiacono and Miller (2011).

22



denote the vector of distinct hazards for nature and all state-specific, non-continuation
hazards of players. Let H µ RK(K≠1)+N(J≠1)K denote the space of admissible vectors h.

In state k, the probability of the next state change occurring within · units of time is

1 ≠ exp

S

U≠·

Q

a
ÿ

l ”=k

q
kl

+
ÿ

i

⁄
ÿ

j ”=0
‡

ijk

R

b

T

V . (14)

This is the cumulative distribution function (cdf) of the exponential distribution with rate
parameter equal to the sum of the exogenous state transition rates and the hazards of the
non-continuation actions for each player.

Di�erentiating with respect to · yields the density for the time of the next state change,
which is the exponential probability density function with the same rate parameter as before:

Q

a
ÿ

l ”=k

q
kl

+
ÿ

i

⁄
ÿ

j ”=0
‡

ijk

R

b exp

S

U≠·

Q

a
ÿ

l ”=k

q
kl

+
ÿ

i

⁄
ÿ

j ”=0
‡

ijk

R

b

T

V . (15)

Conditional on a state change occurring in state k, the probability that the change is due
to agent i taking action j is

⁄‡
ijkq

l ”=k

q
kl

+
q

i

⁄
q

j ”=0 ‡
ijk

. (16)

Now, define g to be the exponential term from (14) and (15) restated as a function of h:

g(·, k; h) = exp

S

U≠·

Q

a
ÿ

l ”=k

q
kl

+
ÿ

i

ÿ

j ”=0
h

ijk

R

b

T

V . (17)

Then, the joint likelihood of the next stage change occurring after an interval of length
· and being the result of player i taking action j is the product of (15) and (16),

⁄‡
ijk

g(·, k; h),

with the corresponding likelihood of nature moving the state from k to l being

q
kl

g(·, k; h).

Now consider a continuous time sample of M markets. Define ·
mn

© t
mn

≠ t
m,n≠1 to

be the holding time between events. For the interval between the last event and the end
of the sampling period, we define the final state and interval length as k

m,T +1 © k
m,T

and
·

m,T +1 © T ≠ t
mT

. Let I
mn

(i, j) be the indicator for whether the n-th move in market m
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was a move by player i and the choice was j and let I
mn

(0, l) be the indicator for whether
the n-th move in market m was a move by nature to state l. Then, the maximum likelihood
estimates of the hazards h are

ĥ = arg max
hœH

Y
]

[

Mÿ

m=1

Tÿ

n=1

S

Uln g(·
mn

, k
mn

; h) +
ÿ

l ”=kmn

I
mn

(0, l) ln q
kl

+
ÿ

i

ÿ

j ”=0
I

mn

(i, j) ln h
ijk

T

V + ln g(·
m,T +1, k

m,T +1; h)

Z
^

\ .

The last term is the natural log of one minus the exponential cdf, to account for the fact
that another state change was not observed by the end of the sampling period.

Step 2: Estimating the Structural Payo� Parameters In Step 2, we use the esti-
mated hazards from Step 1 to estimate the structural parameters ◊ œ �, which determine
the flow payo�s u and instantaneous payo�s Â. The main idea is to express the structural
conditional choice-specific hazards as functions of ◊ and the estimated hazards ĥ so that no
fixed-point problem needs to be solved. Recall that, given the estimated hazards, we can
estimate the choice probability for j ”= 0 as ĥ

ijk

/⁄ and 1 ≠ q
j ”=0 ĥ

ijk

/⁄ for j = 0.
Then, let � : � ◊ H æ H : (◊, h) ‘æ �(◊, h) denote the mapping by which, given vectors

◊ and h, a new vector hÕ = �(◊, h) is determined using the inverse CCP mapping. This
proceeds in two steps. First, given ◊ and h, we construct Q and ‡ and obtain new value
functions. In the second step, given the new value functions, we determine the new choice
probabilities ‡Õ and then form the new vector hÕ. Note that equilibrium conditional choice
probabilities must satisfy h = �(◊, h).

Here, � can be either of two mappings. If the finite dependence property of Proposition 4
holds, � can be the mapping defined by the representation in (5). More generally, under
Proposition 6, � can be the mapping defined by the linear representation of (8) for the
infinite-horizon case. Although we only consider these two cases here, it is also possible
to use other two-step approaches such as the forward-simulation-based estimators of Hotz
et al. (1994) and Bajari et al. (2007).

In state k, the joint likelihood of the next state change occurring after an interval of
length · and being the result of player i taking action j is

�
ijk

(◊, ĥ) g(·, k; �(◊, ĥ)),

where �
ijk

(◊, h) denotes the element of �(◊, h) corresponding to the hazard of player i
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playing action j in state k. The second stage estimates are then

◊̂ = arg max
◊

Y
]

[

Mÿ

m=1

Tÿ

n=1

S

Uln g(·
mn

, k
mn

; �(◊, ĥ)) +
ÿ

i

ÿ

j ”=0
I

mn

(i, j) ln �
ijkmn(◊, ĥ)

T

V

+ ln g(·
m,T +1, k

m,T +1; �(◊, ĥ))
Ô

.

This is a fairly standard two-step estimator and it is consistent and asymptotically normal
under suitable regularity conditions. In the next section we consider two-step estimation
in the leading case of discrete time data. There, we formally state su�cient conditions
for consistency and asymptotic normality. The properties of the estimator above, with
continuous time data, are largely similar.

6.2 Two-Step Estimation with Discrete Time Data

Often the exact sequence of events and event times are not observed, but rather the state
is only observed at discrete points in time. Here, we consider estimation with a dataset of
observations {k

mn

: m = 1, . . . , M, n = 0, . . . , T} which are sampled at times on the lattice
{n� : n = 0, . . . , T}. We first show that it is still easy to carry out two-step estimation.
We then briefly discuss some relevant computational details.

We now formalize our assumptions in order to define the two-step estimator with discrete
time data and establish its large sample properties. These are standard regularity conditions
requiring markets to be independent, the parameter space to be compact, the population
parameter vector to be identified, and the hazard mapping � to be su�ciently smooth.

Assumption 8. � is compact and the true parameters ◊0 lie in the interior of �.

Assumption 9. For any ◊ œ � with ◊ ”= ◊0 and any h such that h = �(◊, h), we have
h ”= h0 for the hazards h0 implied by ◊0.

Assumption 10. � : � ◊ H æ H : (◊, h) ‘æ �(◊, h) is twice continuously di�erentiable.

Define the pseudo likelihood function

L
M

(◊, h) = 1
M

Mÿ

m=1

Tÿ

n=1
ln P

km,n≠1,kmn (�; �(◊, h)) ,

where P
k,l

(�; h) denotes the (k, l) element of the transition matrix induced by h. Recall
that for any h œ H a corresponding matrix Q =

q
N

i=0 Q
i

can be constructed.
Suppose we have a

Ô
M -consistent first stage M-estimator ĥ for h0. For example, the

nonparametric maximum likelihood estimator of h based on P (�; h) is an estimator of this
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kind. We define the pseudo maximum likelihood estimator ◊̂ of ◊0 as

◊̂ = arg max
◊œ�

L
M

(◊, ĥ).

Under the maintained assumptions, we show that ◊̂ is consistent and asymptotically normal.

Proposition 9. Suppose that Assumptions 1–10 hold and that ĥ is an M-estimator of h0

such that
Ô

M(ĥ ≠ h0) dæ N(0, �). Then

Ô
M(◊̂ ≠ ◊0) dæ N

1
0, �≠1

◊◊

€ + �≠1
◊◊

€�
◊h

€��€
◊h

€�≠1
◊◊

€

2

where �
◊◊

€ = E[Ò
◊

s
m

Ò
◊

€ s
m

] and �
◊h

€ = E[Ò
◊

s
m

Ò
h

€ s
m

] and s
m

is the pseudo-score

s
m

©
Tÿ

n=1
ln P

km,n≠1,kmn

1
�; �(◊0, h0)

2
.

6.2.1 Computational Considerations

The matrix exponential can be computed using one of many known algorithms (cf. Moler
and Loan, 1978, Sidje, 1998). When the Q matrix is large, this may seem to introduce
a dimensionality problem rivaling that of discrete time models. However, the Q matrix
is often very sparse, which substantially reduces the computational burden. Sparse matrix
algorithms can be used to compute P (�) which typically require only being able to compute
the action of Q on some generic vector v. Since the structure of Q is known, this usually
involves very few multiplications relative to the size of the intensity matrix, which is K ◊K.
Furthermore, only at most MT rows of P (�) need be calculated to estimate the model,
corresponding to the number of observations.19

We now provide some intuition for why discrete-time data will not substantially com-
plicate the problem, utilizing the uniformization procedure discussed in Section 5.1 under
which we factor the overall jump process into a Poisson process with rate “ and an em-
bedded Markov chain Z(q, ◊). The Markov chain depends on the rates of state changes
for nature, q, and the structural parameters ◊ through the CCPs. The transition matrix
associated with moving from any state k to any future state kÕ in exactly r steps is simply
Zr. Let a

n

denote a vector of length K, which has a one in position k
n

, corresponding to
the state at observation n, and zeros elsewhere (i.e., the k

n

-th standard basis vector). The
maximum likelihood estimates given a dataset of discrete observations at intervals of unit

19Algorithms are available which exploit the sparsity of Q and directly compute the action of P (�) on
some vector v, further reducing the computational cost. Since v can be the n-th standard basis vector, one
can compute only the necessary rows of P (�).
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length (� = 1) satisfy

1
q̂, ◊̂

2
= arg max

(q,◊)

Tÿ

n=1
ln

C Œÿ

r=0

“r exp(≠“)
r! a€

n

Z(q, ◊)ra
n+1

D

. (18)

The first term in the innermost summation above is the probability of exactly r state
changes occurring during a unit interval, under the Poisson distribution. The second term
is the probability of the observed state transition, given that there were exactly r moves.

The expression in (18) above also suggests a natural simulation-based estimator for
P (�). Namely, we can use the expression inside the sum for the first R < Œ terms and
then draw from the event distribution conditional on having more than R events. One
could then use importance sampling to weight the number of events to avoid redrawing the
simulated paths when changing the parameters.

6.3 Unobserved Heterogeneity

Our methods can also be extended to accommodate permanent unobserved heterogeneity
using finite mixture distributions. In particular, suppose that T observations are sampled
at intervals of length � for each of M markets, where each market is one of Z types. Let
fi(z, k

m1) denote the population probability of being type z conditional on the initial state.20

We can then integrate with respect to the distribution of the unobserved state, so that the
first-step maximum likelihood problem becomes

1
ĥ, fî

2
= arg max

(h,fi)

Mÿ

m=1
ln

C
Zÿ

z=1
fi(z, k

m1)
NŸ

n=1
ln P

km,n≠1,kmn(�; h, z)
D

, (19)

where P (�; h, z) is the transition matrix for type z as a function of the hazards, condi-
tional on the observed and unobserved states. Both the hazards and type probabilities are
estimated in the first stage using the EM algorithm as in Arcidiacono and Miller (2011).

Bayes’ rule gives the probability of market m being in unobserved state z given the data.
Denoting fi

m

(z) as this conditional probability, it is defined as:

fi
m

(z) =
fi(z, k

m1)
r

T

n=1 P
km,n≠1,kmn(�; ĥ, z)

q
z

Õ fi(zÕ, k
m1)

r
T

n=1 P
km,n≠1,kmn(�; ĥ, zÕ)

.

These probabilities are then used as weights in the second-step pseudo likelihood function
20By letting fi(z, km1) depend on km1, we allow for an initial conditions problem.
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to estimate the structural parameters:

◊̂ = arg max
◊

Mÿ

m=1

ÿ

z

fi
m

(z)
Tÿ

n=1
ln P

km,n≠1,kmn(�; �(◊, ĥ), z).

6.4 Comparison to Discrete Time Methods

Characterizing dynamic problems in continuous time has both advantages and disadvantages
when compared to discrete time formulations.

From a computational perspective, the key benefit to working in continuous time con-
cerns the treatment of counterfactuals. Here there are two advantages over discrete time.
First, even if the data is time aggregated, the counterfactual analysis can leverage the full
computational benefit of the underlying continuous time process. In particular, instanta-
neous representations of the value functions can be used to solve for counterfactual hazards,
greatly reducing computational times because only one event occurs in any given instant.
In the typical discrete time set up, all players move simultaneously, sharply increasing the
computational burden. Second, one potential source of multiple equilibria—simultaneous
moves—is eliminated in the continuous time context. Multiple equilibria make interpreting
counterfactuals di�cult due to ambiguity regarding which equilibrium would be played in
the counterfactual environment.

On the other hand, estimation is more complicated in continuous time when data are
time aggregated, as it requires integrating out over the possible paths between the observed
state changes. It is important to keep in mind, however, that estimation is not the main
bottleneck for research, as consistent estimates can be obtained with two-step estimation
in either discrete or continuous time with low computational burden.

Continuous and discrete time representations of dynamic games also have di�erent eco-
nomic implications due primarily to the contrast between simultaneous and (stochastic)
sequential moves. The applicability of each approach depends on the salient features of the
economic setting.21

It is well-known, for example, that in a discrete time setting with asymmetric informa-
tion, agents can sometimes make “mistakes” that arise from the simultaneity of choice (for
example, simultaneously opening in the same location as a rival with a low ex-ante proba-
bility of entering because the rival happened to receive a “high” idiosyncratic shock). This
is obviously most damaging in a static model (where firms cannot correct their mistakes)
but may be unattractive in a dynamic setting as well if, for example, the choice requires

21The methods developed here apply to stationary environments. While dynamic games are typically
estimated assuming stationarity, there are exceptions. See Beauchamp (2015) and Igami (2014) for examples
of empirical games in non-stationary environments. Further work is necessary to understand whether the
tools developed here can be extended to non-stationary, continuous time environments.
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substantial investments to un-wind. That said, if such “mistakes” are a salient feature of the
economic environment because, for example, firms only observe their rival’s actions with
a lag, a discrete time model might be able to capture this behavior more simply than a
continuous time model.

More broadly, the regularity of decision timing implied by the discrete time model may
be preferred in some settings. For example, there may be institutional features that restrict
the timing of when decisions can be made. Board meetings may occur at pre-specified (e.g.
quarterly) times during the year or long-term contracts (or implicit agreements) might
prevent an agent from changing its actions for a pre-specified period of time. In such cases,
a discrete time model may be more appropriate. On the other hand, a discrete time model
may force many outcomes to occur at the same instant that are more naturally viewed as
occurring sequentially (e.g. the opening or closing of stores, changes in installed capacity,
or the release of new products). Generally, the appropriate choice of modeling assumption
will depend on the institutional setting being considered.

7 Wal-Mart’s Entry into the Supermarket Industry

Our empirical application considers the impact of Wal-Mart’s entry into the supermarket
industry. In 1994, the first year for which we have data, Wal-Mart owned 97 supercenter
outlets. However, by 2006, the last year of our data, they operated 2225 such outlets and
ranked first among all grocery firms in terms of overall sales. Much of this expansion came
at the expense of incumbent grocers. The question is exactly which types of firms were
most impacted and how the competitive landscape evolved in response.

Wal-Mart first gained national prominence through its gradual rise to an ultimately
dominant position in the discount store (general merchandise) industry. Due to its large
role in the U.S. economy (Wal-Mart accounted for 8.8 percent of (non-automobile) retail
sales in 2004), Wal-Mart has attracted significant attention from both the popular press
and academic researchers. Much of the debate centers on Wal-Mart’s overall impact on
consumer surplus, labor market outcomes, and local competitors. Our focus here will be
on its impact on competition and market structure.

There is no doubt that Wal-Mart has had a significant impact on retail competition. Due
to its scale and operational e�ciency, Wal-Mart is often able to undercut the prices of its
rivals, both in general merchandise and groceries. For example, in the context of groceries,
Basker and Noel (2009) find that Wal-Mart is able to set prices that are on average 10
percent lower than their competitors and that this di�erential appears to be increasing
over time. They also find evidence of a competitive response: in the short run, competing
grocery stores reduce prices by 1-2% when a Wal-Mart enters. They note that the response
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is mostly due to smaller scale competitors—the reaction by the top 3 national chains is
only half as large. Matsa (2011) looks at Wal-Mart’s impact on supermarket stock-outs (a
measure of quality) and finds that entry by Wal-Mart decreases stock-outs at competing
supermarkets, but that this impact is instead centered on large-scale competitors. The
smaller rivals either cut prices or exit. Since much of Wal-Mart’s advantage appears to
derive from its enormous scale and intensive investment in information technology (Basker,
2007), there is particular concern that Wal-Mart stifles small scale entrepreneurial activity.
This was particularly salient in the context of the discount store industry (Wal-Mart’s
original line of businesss) which was, prior to entry by Wal-Mart, served by a collection
of single-store outlets that typically focused on a more narrow line of goods. By o�ering
greater breadth and depth of assortment, Wal-Mart consistently leveraged its greater scale
to undercut prices and consolidate purchases (by o�ering one stop shopping). The impact
on small scale firms was unambiguously negative—Wal-Mart displaced the “mom and pop”
stores. Jia (2008) concludes that Wal-Mart’s expansion alone drove 50-70 percent of the net
exit of small discount retailers from the late 1980s to mid 1990s. Focusing on the big box
industry as a whole, Haltiwanger, Jarmin, and Krizan (2010) find a large negative impact
of big box chains (including Wal-Mart) on single store retailers and small chains, continuing
a long term trend toward larger chains throughout much of retail.

However, Wal-Mart’s impact on the structure of the grocery industry is less clear. While
Matsa (2011) finds a significant negative impact on the survival probabilities of small-scale
rivals consistent with earlier experience in the discount industry (and a shift up market by
the larger chains), Ellickson and Grieco (2013) find a large, geographically localized negative
impact of Wal-Mart centered on the large grocery chains, with no measurable impact on the
small firms at all. In the analysis presented below, we find that Wal-Mart’s negative impact
falls almost entirely on the large chains and is actually associated with an expansion by the
single store segment. This sharp contrast with the earlier case of the discount segment is
striking, and illustrates the benefit of a dynamic structural model as the overall shift is an
equilibrium result that evolves slowly over time.

7.1 Data

Our data for the supermarket industry are drawn from yearly snapshots of the Trade Di-
mensions Retail Database, capturing the set of players that are active in September of each
year, starting in 1994 and ending in 2006. Trade Dimensions continuously collects infor-
mation on every supermarket (and many other retailers) operating in the United States
for use in their Marketing Guidebook and Market Scope publications and as a standalone,
syndicated dataset. The definition of a supermarket used by Trade Dimensions is the gov-
ernment and industry standard: a store selling a full line of food products that grosses at

30



least $2 million in revenue per year. Store level data on location and a variety of in-store
features are linked to the firm level through a firm identity code, which can also be used to
identify the location of the nearest distribution facility. In addition to the Trade Dimensions
data, which consists of yearly snapshots of the entire industry, we also have information on
the exact opening dates of the Wal-Mart supercenters that were gathered from a variety of
online sources.22

For market definition, we focus on Metropolitan Statistical Areas (MSAs) with popu-
lation under 500,000, yielding a total of 309 markets. For our purposes, a firm is deemed
to be a chain firm in a market if it has at least 20 stores open nationally and its maximum
market share (in terms of number of stores) exceeds 20% in at least one year. We allow
for up to seven chain players in each MSA who may or may not be active in the market at
any given time. If a chain has no stores in a particular period and chooses not to build a
store, that chain is replaced by a new potential chain entrant. In our model, we allow for
ten potential fringe firm entrants in each MSA, so the number of fringe firms is the number
of incumbent fringe firms plus ten.

Demand for supermarkets is a function of population. The data on market popula-
tion are interpolated from the decennial censuses of the United States and population is
discretized into six categories.23 Each MSA is assigned to one of three population growth
categories based on the change in the population of the MSA over the full sample period. In
particular, the growth category of a city is fast if the annual growth rate is greater than 2%
(74 cities), moderate if the annual growth rate is between 1% and 2% (106 cities), and slow
if the annual growth rate is less than 1% (129 cities). The parameters governing population
transitions are indexed by these growth categories.

Table 1 gives descriptive statistics for the sample. On average, there are about two and
a half chain firms per market, with 3.7 stores per chain firm on average. Markets contain
an average of 13 fringe stores. The number of Wal-Marts is much smaller, averaging one
store per market in the sample. On average, there are 0.277, 0.177, and 0.825 stores built
per market within a year by chain firms, Wal-Mart, and fringe firms, respectively. The
corresponding figures for store closings are 0.224, 0.002, and 0.908, revealing that Wal-Mart
virtually never exits during our sample period.

22We use data on the exact date of Wal-Mart entry for a robustness specification below to examine how
well our estimator does when it is based only on time aggregated data. Data on the exact date of entry comes
from two sources. The first is trendresults.com, which provides the opening date for all Wal-Mart stores.
Some supercenters, however, entered as a result of a conversion from a discount store to a supercenter and
this dataset misses these conversion dates. We supplement these data with data from Emek Basker, who
collected entry dates directly from Wal-Mart’s website. Unfortunately, some of the dates in this dataset were
clustered around particular days, suggesting the possibility that the exact entry date was approximated in
some cases. For the robustness analysis below, we only used exact Wal-Mart entry dates if we were confident
in the timing. This occurred for 256 of the 475 Wal-Mart entries.

23The discretization was such that di�erences in log population between adjacent categories was equal.
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Table 2 looks at entry and exit decisions for chain firms and fringe firms one year before,
the year of, and the year after initial entry by Wal-Mart. Here, we see that chain and fringe
firms both respond negatively to Wal-Mart. The number of new chain stores falls from 0.311
in the period before Wal-Mart enters to 0.189 in the period after—a 40% drop. Similarly,
the number of stores that close increases by over 6.5% from a base level of 0.122. The
qualitative patterns for fringe firms are the same, though the e�ects are muted, suggesting
that Wal-Mart’s presence is more detrimental to chain firms than fringe firms.24

7.2 Model

To quantify Wal-Mart’s impact on large versus small rivals, and allow for heterogeneous
competitive e�ects across firm types, there are three types of firms in our model: chain firms
(who can operate many stores), Wal-Mart (who can also operate many stores), and fringe
firms (who can operate at most one store each). We assume that the chain firms (including
Wal-Mart) make strategic decisions within each local market (MSA), but independent de-
cisions across markets (i.e. they do not choose their entire spatial layout jointly, but rather
make optimal decisions on a market by market basis). With each move arrival, chain stores
can open one new store (j = 1), do nothing (j = 0), or, conditional on having at least one
open store, close a store (j = ≠1). A move arrival for an incumbent fringe firm provides an
opportunity for the firm to exit. Similarly, move arrivals provide opportunities for potential
entrants to enter. In the context of retail competition, a random move arrival process might
reflect the stochastic timing of local development projects (e.g., housing tracts and business
parks), delays in the zoning and permitting processes, and the random arrival of retailers
in other lines of business that have higher valuations for the properties currently occupied
by incumbent grocers. All firms have the same move arrival rate, normalized at ⁄ = 1, and
q1 and q≠1 are the rates of moving up and down in population, respectively.

Our model is a continuous-time, discrete action version of the dynamic oligopoly model
of Ericson and Pakes (1995) and Pakes and McGuire (1994), in which heterogeneous firms
make entry, exit, and investment decisions. Firms in our model are di�erentiated by type
(Wal-Mart, chain, or fringe) and by the number of stores they operate. Firms invest by
building new stores and disinvest by closing stores.

Since the state variables are discrete, we enumerate all possible states by an integer
scalar index k = 1, . . . , K. The state of the market at each instant can be summarized by

24This table also highlights an advantage of using a model where the frequency of moves can di�er from
the sampling frequency of the data. Note that the numbers of entering and exiting chain stores in the year
of Wal-Mart’s initial entry are bracketed by the corresponding values the year before and the year after
Wal-Mart’s entry. In markets where chain and fringe stores saw little change in their building patterns, this
suggests that Wal-Mart entered later in the period. In contrast, when Wal-Mart enters early in the period,
exit by chain and fringe stores is more likely to occur within the period.
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Therefore, each value of k represents an encoded state vector and the function l(i, j, k)
gives the state conditional on firm i taking action j in state k. Additionally, each market is
characterized by a time-invariant unobserved type z, which is observed by the firms in the
market but not by the econometrician.25 Hence, the full state vector at any instant can be
written as (x

k

, z).

7.2.1 Value Functions

We now provide the general formulation of the value functions and then describe the relevant
state variables. For a particular market, the value function for firm i in state k is given by:
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(20)
In this expression, nature is indexed by i = 0, the choices are j = 1 and j = ≠1, and the
costs Â

ijk

reflect the costs of initial entry, building new stores, or closing stores depending
on the values of the player identity i, choice j, and state k. We specify these costs for each
firm type below.

Following standard convention in the empirical entry literature, we assume that if a
chain or fringe firm closes all of its stores, then the firm cannot enter again later (in e�ect,
the continuation value for exit is identically zero). Hence, if a chain firm exits, it would
be replaced by a new potential chain entrant. For chain and fringe firms, this allows us to
replace the value functions on the right-hand side of (20) using Propositions 2 and 3. As a
result (and exploiting Proposition 4), the value function on the left-hand side of (20) can be
expressed as a function of the flow payo�s, the move arrival parameters, and the probabilities
of making particular decisions. Because Wal-Mart essentially never closes stores or exits
markets, applying our finite dependence representation to recover to their parameters would
be inappropriate.26 Nonetheless, we are able to fully account for its strategic impact on
rivals’ actions by using our first stage estimates to capture its rivals’ beliefs about Wal-
Mart’s equilibrium policy functions. This flexibility is an additional advantage of two-step

25We use Z = 5 points of support, z œ {≠1.3998, ≠0.5319, 0.0, 0.5319, 1.3998}, based on a discrete approx-
imation to a standard normal random variable.

26We could, however, have used the representation in Proposition 6 to recover these parameters. We do
not do so because they are not relevant to the policy simulations we consider.
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estimation.

7.2.2 Flow Profits and Choice-Specific Payo�s for Chain Firms

We specify the flow payo� u
ik

for chain firms in terms of per-store latent revenue and
total cost. These are linear functions of market population, d

k

, the number of own stores,
sc

ik

, the number of competing chain stores, s̃c
ik

, the number of Wal-Mart stores, sw
k

(Wal-
Mart), and the number of fringe stores, sf

k

. Revenues also depend on an unobserved (to the
econometrician) characteristic of the market, z, which reflects the tastes of consumers in a
given market for particular types of products. Flow profits for a chain firm i in state k are
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where ecik

is (the negative of) the flow cost of operating a set of stores:
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A cubic cost function allows there to be regions of increasing and then decreasing returns to
scale, ensuring that for each state the optimal value of sc
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is finite. Collecting terms yields
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The choice-specific instantaneous payo�s Â
ijk

depend on the unobserved state z and
di�er according to whether firm i is an incumbent (sc
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> 0) or new entrant (sc
ik

= 0) and
whether the choice is building a new store (j = 1) or closing an existing store (j = ≠1):
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Therefore, the structural parameters of interest for chain firms are the coe�cients of the
per-store payo� function and the parameters of the instantaneous payo�s:
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1).

We assume that there are seven chain firms in all markets with the number of potential
entrants in a market equal to seven minus the observed number of chain firms in the market.
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The two-step estimation we employ means we do not need to place any restrictions on the
number of chain stores a firm operates, though we will need to do so when we solve for
counterfactual choice probabilities.

7.2.3 Flow Profits and Choice-Specific Payo�s for Fringe Firms

Flow profits for fringe stores have a similar linear form to that of chain firms, though with
di�erent coe�cients and a di�erent flow cost function, ef

ik

. Namely, an operating fringe
store has profits given by:27
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Fringe competitors often rely on the same suppliers to deliver goods to their stores. Hence,
there may be some density economies present at first. However, at some point competitive
influences will drive up costs, suggesting a quadratic cost function in the total number of
fringe stores:
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Recall that fringe firms can operate at most one store. Therefore, potential fringe
entrants only choose whether to enter (and build a single store) or not and incumbent
fringe firms only decide whether to close their store or not. We assume there are always
ten potential fringe entrants. Therefore, the choice-specific instantaneous payo�s for fringe
firms, Â

ijk

, represent entry costs for new entrants (for which sf
ik

= 0) and exit values for
incumbents (for which sf

ik

= 1). Since fringe firms can operate at most one store, we cannot
distinguish the entry cost from the building cost. Because we estimate a fixed flow cost
parameter for fringe firms, ◊f

0, we normalize the exit value to zero. As with chain firms, we
allow the entry cost to depend on the unobserved state z:
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0 otherwise.

Therefore, the structural parameters of interest for fringe firms are the coe�cients of the
27Note that there is no term for own number of stores here as fringe stores can only operate one store.
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payo� function and the parameters of the instantaneous payo�s:
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1).

7.3 Estimation

We estimate the model in two steps, first estimating the reduced form hazards that capture
the rate of change in the number of stores of each format and the change in population
over time, and then estimating the structural parameters of the profit functions, taking the
reduced form hazards as given.

7.3.1 Step 1: Estimating Reduced-Form Hazards

We estimate the probabilities of opening a store, closing a store (if the firm has at least
one store), and doing nothing using a linear-in-parameters multinomial logit sieve, with
the parameters varying by firm type (chain, Wal-Mart, and fringe).28 In particular, let
h(–) denote the vector of reduced form hazards as in (13) but written as a function of a
parameter vector –. Let ‡̃

ij

(k, z, –) denote the reduced form probability of firm i making
choice j in state (k, z), which has the form
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Since we have annual data, we simulate potential sequences of events that can happen
over the course of each year. As discussed earlier, the structure of our data is such that we
observe all events that took place in each year, but do not observe the exact times at which
these events occur. For each period we draw R simulated paths, randomly assigning each

28The variables included in the multinomial logit models are the number of fringe stores and its square,
the number of chain stores and its square, the number of Wal-Marts and its square, the total number of
firms squared, and interactions of each of these variables with population. In addition, we control for city
growth type, the unobserved state, and the unobserved state interacted with an indicator for building a new
store.
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observed event to a simulated time. Once we have the likelihood of each simulated sequence
of events, we average over these simulated sequences, integrating over move times.

For simplicity, we focus on a single observation n in market m where, over an interval
of length � = 1, the starting and ending states are k and k and W events were known to
occur in between. Let k

(r)
w

denote the state immediately preceding event w in simulation r,
with w = 1, . . . , W + 1. Since we observe the states at the beginning and end, all simulated
paths r = 1, . . . , R are such that k

(r)
1 = k and k

(r)
W +1 = k. Let I
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(i, j) be the indicator for
whether event w of the r-th simulation was action j taken by firm i and let t
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and ·
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be the absolute time and holding time of simulated event w. Conditional on knowing the
unobserved state z, the simulated likelihood for the single observation n in market m is
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Since z is unobserved, we estimate the reduced form hazards using mixture distributions.
Higher values of the unobserved state may make it easier or harder to operate as a chain,
fringe, or Wal-Mart store respectively. We discretize the standard normal distribution into
five points and then estimate the population probabilities of being at each of these points.29

Let fi(z, k1) be the probability of the unobserved state being z given that the observed
state was k1 for the first observation. With M markets and T periods each, integrating
with respect to the distribution of the unobserved market states yields
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We obtain (–̃, fĩ) using the EM algorithm following Arcidiacono and Miller (2011). These
first stage estimates then give both the reduced form hazards, which are subsequently used
in the second stage to form the value functions, as well as the conditional probability of
each market being in each of the unobserved states.

29Note that there is an initial conditions problem here, so we allow the prior probability of being in a
particular unobserved state to depend on the first period state variables, similar to Keane and Wolpin (1997)
and Arcidiacono, Sieg, and Sloan (2007). In particular, we specify the prior probabilities as following an
ordered logit that depends on the number of chain stores, the number of Wal-Marts, and the number of
fringe stores, all interacted with population, and the city growth type.
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7.3.2 Step 2: Estimating the Structural Parameters

In Step 2, we take the probabilities of being in each unobserved state and the reduced-form
hazards from Step 1 as given. We then separately estimate the structural parameters for
chain firms and fringe stores. As noted above, there is not enough observed variation in Wal-
Mart’s actions to feasibly estimate their structural parameters using our finite dependence
representation. However, their strategic impact is captured by the first stage estimates,
which reflect their rivals’ beliefs over Wal-Mart’s expected actions. Our counterfactual
experiments will then include only scenarios in which Wal-Mart’s structural parameters do
not play a role (e.g., equilibria in which Wal-Mart no longer exists). Let fi

m

(z) denote the
probability of MSA m being in unobserved state z given the data. Using Bayes’ rule, we
have
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These probabilities are then used as weights in the likelihood function for Step 2.
Next, using Proposition 4 we express the value function in (20) as a function of the struc-

tural parameters, ◊, and the reduced form hazards from the first stage, h(–̃). Let � denote
the mapping which yields the new implied hazards as a function of ◊ and h. In practice we
will use h = h(–̃), based on the first stage estimates, and then estimate ◊. Let ‡̃
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(◊, h(–̃))/⁄ denote the rescaled element of �(◊, h(–̃)) that corresponds to the implied
probability of firm i taking action j in state (k, z). The second-step pseudo-likelihood func-
tion used to estimate ◊ can then be written as Ľ
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same simulation draws as in Step 1 but replace each ‡̃
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probability which is a function of ◊. The second stage estimates are then given by
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7.4 Results

The structural parameter estimates for chain stores are presented in Table 3. In the first set
of columns we present results in which all entry and exit decisions are aggregated over the
year. In the second set we use the information on the exact date of Wal-Mart entry, while
the third set removes the controls for unobserved heterogeneity. In all cases, we calculate
standard errors using the approach of Ackerberg, Chen, and Hahn (2012).

All three sets of estimates show Wal-Mart having substantial e�ects on chain flow profits
that dwarf the e�ects of other chain and fringe stores. Despite these large e�ects, the
estimates aggregating over Wal-Mart entry times (column 1) and using the exact date of
Wal-Mart entry (column 2) show virtually identical parameter estimates, suggesting that,
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in this case, integrating out over entry times does not contaminate the estimates.
The e�ects of competition on chain profits, however, are substantially lower in the third

set of columns that do not control for unobserved heterogeneity. The coe�cients on the
number of Wal-Marts and number of fringe stores are over thirty percent higher in columns
1 and 2 than in column 3, with the e�ect of the other chain stores almost four times as high.
This is to be expected since, all else equal, higher unobserved demand will be correlated
with more entry leading to estimates of competition that are biased downward. Controlling
for such bias is important for our counterfactual analysis since the degree to which di�erent
firm types face di�erential competitive pressures from each type of rival will determine who
thrives and who fails as the market evolves.

Markets with higher values of the unobserved state face lower building costs for chain
firms and lower diminishing returns for increasing chain size, but the costs of entering the
market are higher. Other coe�cients are as expected—population increases profits and the
costs of building stores is substantial, with even higher costs incurred for entering a market.

Results for the three specifications for fringe firms are presented in Table 4. We again
see negative e�ects of Wal-Mart on fringe profits in all three specifications with the time-
aggregated results (column 1) very close to those that condition on Wal-Mart’s exact entry
times (column 2). In contrast to the chain stores, Wal-Mart’s e�ects on fringe stores are
smaller when we account for unobserved heterogeneity. An additional chain store negatively
a�ects profits of fringe stores, with the e�ect being about half that of an additional Wal-
Mart. By comparison, the e�ect of an additional chain store from a competing chain is a
little over one-sixth of the e�ect of an additional Wal-Mart for chain profits. Hence, Wal-
Mart appears to have a greater relative e�ect on chain stores than fringe stores. Moreover,
the impact of competition from both types of rivals is smaller for the fringe than for the
chains, suggesting that fringe stores are indeed more di�erentiated in product space than
their chain rivals. Since di�erentiation in this industry mainly involves focusing on more
narrow segments of the consumer base (e.g. ethnic foods, organic meats and produce) it
makes sense that the benefits of scale would be more muted here, creating an opening for
smaller scale firms to counter the cost advantage enjoyed by the larger chains.

Due perhaps to the importance of distribution networks (which rely on achieving a
minimal local scale), having more fringe competitors raises profits at first, with competitive
e�ects then dominating as the number of fringe competitors increases. This positive spillover
is robust to the inclusion of correlated unobservables. Population again has a positive e�ect
on profits and there are significant store building costs. Similar to chain stores, higher
values of the unobserved state lower store building costs and lessen the competitive impact
from fringe competitors. However, this latter e�ect is smaller for fringe stores.
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7.5 Counterfactuals

The focus of our empirical analysis is on the di�erential impact of Wal-Mart on the chain and
fringe segments. While Wal-Mart’s earlier impact on the discount sector was unambiguously
detrimental to small-scale rivals, the impact on the grocery industry is much less clear. To
evaluate the impact of Wal-Mart’s entry on the market structure of the grocery industry, we
conducted counterfactual experiments for each of the 205 markets that did not have a Wal-
Mart outlet in the beginning of our sample. In particular, we computed equilibrium policy
functions for a counterfactual scenario in which Wal-Mart does not exist and compared the
temporal evolution of these markets under this counterfactual to the evolution implied by
the estimated first stage policy functions recovered from the true data.30 Using these two
sets of policy functions (true and counterfactual) we then simulated 10,000 future histories
from the first period in the data (1994), and averaged over them (at the market level) to
characterize di�erences in long-run equilibrium outcomes.

Table 5 illustrates the long-run impact of Wal-Mart’s entry. The two panels of Table 5
contain the simulated equilibrium outcomes at year 20 (which corresponds to 2014 in calen-
dar time) and includes several measures of market structure, including the average number
of chain firms, chain stores, fringe stores, Wal-Mart stores, the average market shares of
each of these three player types, the share (by store count) of the largest (C1) and three
largest (C3) firms, and the Herfindahl-Hirschman Index (HHI) computed using the share
of total square feet of selling space.31 Column 1 contains the average initial market popu-
lation, while column 2 contains the number of markets in a given category. The first row
of each panel averages across all 205 markets, while the next four rows in each panel break
this average out by census region.

Several clear patterns emerge. First, Wal-Mart has a sizable negative impact on both
the number of chain firms and number of chain stores that are active in a given market.
Looking across regions, we find that the impact is fairly consistent across the Midwest,
Northeast and South, but only about half as large in the West. This is consistent with both
the higher level of political resistance that Wal-Mart has faced in these markets, and the
fact that the more tightly clustered population centers in these markets are less suited to
Wal-Mart’s more di�use outlet structure.

Second, Wal-Mart’s presence actually leads to an expansion of the fringe. Note that
30There is no guarantee that our counterfactual policy functions are unique. The lower computational

burden of continuous time, however, makes it easier to search for multiple equilibria, while also eliminating
simultaneity as a likely cause of multiplicity. Using 10,000 highly-varied draws on starting values for the
value functions and iterating to a fixed point showed no evidence of multiple equilibria in our counterfactual
simulations.

31Our square footage calculation assumes that all Wal-Mart stores are 62,200 square feet, all chain stores
are 35,500 square feet and all fringe stores are 13,500 feet, which correspond to the empirical averages from
the data.
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this is in sharp contrast to what occurred in the discount store industry, where the small
“mom and pop” stores retreated in the face of Wal-Mart’s expansion. There are at least
two likely reasons for this contrast. First, unlike the earlier experience of rural discount
(general merchandise) stores, Wal-Mart faced a large number of well-established chain stores
in the supermarket industry that had already made similar investments in scale and IT and
were providing a range of products that overlapped very closely with Wal-Mart’s o�erings.
Second, and consistent with this overlap, as captured in the first stage policy function
estimates, Wal-Mart competes more directly with chain firms than those in the fringe. As
noted above, firms in the fringe are much more likely to be horizontally di�erentiated into
a distinct local niche (such as providing an ethnic or gourmet focus) than the full-service
chains. As Wal-Mart displaces the chains, this likely provides an even greater opportunity
for di�erentiation by the fringe segment, while Wal-Mart’s huge cost advantage (reflected
in its large competitive impact on chain flow profits) represents a direct challenge to the
survival of competing chains.

The overall (and regional) impact of Wal-Mart actually leads to a decrease in market
concentration along all three measures (C1, C3 and HHI). This is driven by the displace-
ment of the chains by firms from the fringe. Even though Wal-Mart eventually becomes a
large player in many of these markets, the decrease in the number of chain firms is signifi-
cantly smaller than the decrease in the number of chain stores, leading to a more uniform
market structure when Wal-Mart is present. While we do not have information on prices,
under most models of retail competition a more uniform structure would yield tougher price
competition amongst the remaining firms.

Table 6 cuts the counterfactual results along several additional dimensions. The first
two columns contain the number of markets in each category and the average number of
Wal-Mart’s predicted to enter under the “actual” scenario. The remaining columns report
the percentage change in the various market structure measures employed in Table 5. The
first panel breaks the results out by census region (as in Table 5), illustrating the importance
of accounting for unobserved heterogeneity in capturing regional variation (we will return to
this point shortly). The next panel breaks the results out by market size. We label markets
as either “small” or “large” based on whether their initial population is below or above the
median value. Here we see a sharp contrast: while the negative impact on chains is the
same in both small and large markets, the positive impact on the fringe is much stronger in
the larger markets. This is consistent with the notion that the fringe is exploiting a greater
opportunity for horizontal di�erentiation, as these opportunities would naturally increase
with market size (i.e., a larger population yields more sub-markets large enough to support
one or more stores tailored to more unique tastes). Similarly, we divide markets by “Slow”,
“Moderate”, or “Fast” growth rates based on whether they are in the lower, middle, or
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upper tercile of the population growth distribution.
The last panel breaks markets out by their “unobserved type” as assigned by the finite

mixture model employed above.32 While there were five points of support in the estima-
tion, no markets were pre-dominantly assigned to the highest type. Higher values of the
unobserved type are clearly associated with greater Wal-Mart entry and higher initial pop-
ulation levels. Viewed geographically (results not shown), markets with low values of the
unobserved state tend to be in the western and mountain states as well as New England,
while markets with high values of the unobserved state tend to be in the south and southern
Atlantic states. Again, this is consistent with Wal-Mart’s center of regional strength and
areas where opposition to its expansion is weakest. The highest values of the unobserved
state are also associated with a greater initial fringe presence.

Strikingly, in markets assigned the lowest value for the unobserved type, Wal-Mart has a
strong negative impact on both chain and fringe stores. As a result, concentration actually
increases with Wal-Mart’s presence, as it moves towards being the dominant firm in the
market—an outcome that closely matches what happened in the discount industry. In the
case of the supermarket industry, however, this outcome represents only a very small fraction
of the overall set of markets (9 out of 205). Geographically, these are small, rural markets
that initially had few chains and were essentially dominated by fringe players. Wal-Mart
pushes both types of firms out and actually increases the equilibrium level of concentration.
It seems likely that these markets are too small to support a diverse range of o�erings and
Wal-Mart’s scale advantage dominates.

However, this is far from the modal outcome across the whole industry. For all other
values of the unobserved state, the average impact on the fringe is positive and sharply
increasing with the value of the unobserved state. The overall structure becomes less con-
centrated with Wal-Mart’s presence. This is due to both the contraction of the chain
segment, which is hurt more the greater the value of the unobserved state, and the fact that
the fringe competes less directly with (i.e. is more di�erentiated from) Wal-Mart.

Table 7 considers the impact of ignoring heterogeneity, and presents the same sets of
conditional means employed in Table 6, but using parameters (and counterfactual computa-
tions) estimated without accounting for unobserved heterogeneity. Perhaps not surprisingly,
these results miss the rich heterogeneity apparent in Table 6: the regional variation is muted
and the asymmetric impact in large and small markets vanishes. The last panel breaks
things out using the values of the unobserved state recovered earlier (which are ignored in
this specification). Note that we now lose the traditional story altogether, as the small set
of rural “mom and pop” markets are now averaged in with the rest. Most importantly, the

32The probability fim(z) that market m is of unobserved type z is defined in (21). We take the mean state
for a market to be zm =

q
z

zfim(z) and round zm to the nearest mass point to label cities, respectively, as
“More Negative”, “Negative”, “Zero”, “Positive”, or “More Positive”.
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o�setting impact of Wal-Mart’s expansion, namely its complementary relationship with the
fringe, is sharply reduced as we no longer capture its competitive separation from Wal-Mart
and the interplay with market size.

Table 8 explores the temporal evolution of market structure, providing some insight
into why the expansion of the fringe did not show up in earlier studies and illustrating the
importance of a dynamic structural model in this context. Focusing on the small market
versus large market comparison, the table shows the equilibrium market structure in years
5, 10, 15 and 20. As in year 20, the expansion of the fringe is most pronounced in earlier
years in the larger markets where the scope for di�erentiation is greatest. However, across
both sizes, the expansion of the fringe evolves more slowly than the contraction of the
chains, reflecting the subtle impact of dynamics. Recall that Wal-Mart’s direct impact
on the flow profits of the fringe is negative, but the overall impact is positive since Wal-
Mart pushes out the chains, who compete more directly with them, shifting the competitive
landscape toward the smaller scale competitors. Interestingly, Wal-Mart has recently started
to shift its focus toward o�ering much smaller stores (e.g. Wal-Mart Neighborhood Markets
and Wal-Mart Express, which are closer in size to corner grocers and convenience stores),
perhaps acknowledging the importance of these more localized o�erings and the decreasing
role of local scale.

8 Conclusion

While recently developed two-step estimation methods have made it possible to estimate
large-scale dynamic games, performing simulations for counterfactual work or generating
data remains severely constrained by the computational burden that arises due to simultane-
ous moves. We recast the standard discrete-time, simultaneous-move game as a sequential-
move game in continuous time. This significantly reduces the computational cost, greatly
expanding the breadth and applicability of these structural methods.

By building on an underlying discrete-choice random utility framework, our model pre-
serves many of the desirable features of discrete-time models. In particular, we show that
the insights from two-step estimation methods can be applied directly in our framework,
resulting in an order of magnitude reduction in computational costs during estimation. We
also show how to extend the model to accommodate incomplete sampling schemes, including
time-aggregated data. Both are likely to be relevant for real-world datasets.

Using this formulation of a dynamic game in continuous time, we develop a dynamic
model of retail competition that allows for substantial heterogeneity (both observed and
unobserved) across agents and markets. We use the model to study the impact of Wal-
Mart’s entry into the retail grocery industry on market structure. The results imply that
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Wal-Mart’s entry on market structure varies greatly across markets, leading to an increase
in market concentration in some markets which were initially served primarily by smaller
fringe stores and to a sharp decrease in concentration in the majority of markets that were
characterized by the presence of a number of large, dominant chains.

The inclusion of unobserved heterogeneity in the model is essential for uncovering these
qualitatively distinct economic implications of Wal-Mart’s entry across markets. Taken
as a whole, the results of our analysis demonstrate the importance of incorporating sub-
stantial heterogeneity both across markets and firm types in estimating dynamic games of
retail entry and competition, thereby highlighting the advantage of computationally light
approaches for estimating and solving dynamic models with large state spaces.

A Proofs

A.1 Proof of Proposition 1

Let �(‡) denote the K ◊ K state transition matrix induced by the choice probabilities ‡

and the continuation state function l(·, ·). Let Q̃0 denote the matrix formed by replacing
the diagonal elements of Q0 with zeros. Finally, let E(‡) be the K ◊ 1 matrix containing
the ex-ante expected value of the immediate payo� (both the instantaneous payo� and the
choice-specific shock) as defined in Proposition 1.

We can rewrite the value function in (1) in matrix form as
Ë
(fl + ⁄)I ≠ (Q0 ≠ Q̃0)

È
V (‡) = u + Q̃0V (‡) + ⁄ [�(‡)V (‡) + E(‡)] .

Collecting terms involving V (‡) yields

[(fl + ⁄)I ≠ ⁄�(‡) ≠ Q0] V (‡) = u + ⁄E(‡).

The matrix on the left hand side is strictly diagonally dominant since the diagonal of Q

equals the o�-diagonal row sums, the elements of �(‡) are in [0, 1], and fl > 0 by assumption.
Therefore, by the Levy-Desplanques theorem, this matrix is nonsingular (Horn and Johnson,
1985, Theorem 6.1.10). The result follows by multiplying both sides of the above equation
by [(fl + ⁄)I ≠ ⁄�(‡) ≠ Q0]≠1.

A.2 Proof of Proposition 2

For choice j in state k let v
jk

= Â
jk

+V
l(j,k) denote an arbitrary choice-specific valuation and

let v
k

= (v0k

, . . . , v
J≠1,k

) œ RJ denote a J-vector of valuations in state k. Let ‡
jk

denote
a choice probability and let ‡

k

= (‡0k

, . . . , ‡
J≠1,k

) œ �J≠1 denote an arbitrary J-vector of
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CCPs where �J≠1 = {(p0, . . . , p
J≠1) œ [0, 1]J :

q
j

p
j

= 1} is the unit J-simplex.
There is a mapping H

k

: RJ æ �J≠1 from valuations to choice probabilities in state k

where the j-th component is defined as ‡
jk

= H
jk

(v
k

) = Pr
!
j = arg max

j

ÕœA{v
j

Õ
,k

+ Á
j

Õ}"
.

Let P
k

µ �J≠1 be the space of all CCP vectors ‡
k

in state k. In other words, P
k

is
the codomain of H

k

given by P
k

= {‡
k

œ �J≠1 : ‡
k

= H
k

(v
k

), v
k

œ RJ}. For the
normalizing choice jÕ, let V denote the (J ≠ 1)-dimensional space of normalized valuations
V = {ṽ œ RJ : ṽ

j

Õ = 0}.
Now consider the mapping H̃

k

: V æ P
k

defined by restricting H
k

to the domain V µ RJ

and the inverse correspondence H̃≠1
k

. To see that the inverse H̃≠1
k

in V is nonempty, note
that for any ‡

k

œ P
k

there is a v
k

œ RJ with H̃
k

(v
k

) = ‡
k

by definition. Because the choice
probabilities are invariant to the normalization of the valuations, there is a corresponding
ṽ

k

œ V with H̃
k

(ṽ
k

) = H̃
k

(v
k

) = ‡
k

. By Proposition 1 of Hotz and Miller (1993), also
restated as Lemma 3.1 by Rust (1994), H̃

k

is one-to-one and therefore the inverse H̃≠1
k

(‡
k

)
is unique. The result follows by noting that the j-th component of the inverse, H̃≠1

jk

(‡
k

),
yields ṽ

jk

= Â
jk

≠ Â
j

Õ
k

+ V
l(j,k) ≠ V

l(jÕ
,k) as a function of j, jÕ, and ‡

k

.

A.3 Proof of Proposition 3

Furthermore, since the payo�s are additively separable we can relate the CCPs to the
social surplus function of McFadden (1981): S

k

(v
k

) © E [max
jœA{v

jk

+ Á
j

} | k] . By the
Williams-Daly-Zachary theorem (Rust, 1994, Theorem 3.1), S

k

exists and for any – œ R,
S

k

(v
k

+ –) = S
k

(v
k

) + –. Using this additivity property for – = v
j

Õ
,k

,

E
5
max

j

{v
jk

+ Á
j

} | k

6
= E

5
max

j

)
v

jk

≠ v
j

Õ
k

+ Á
j

≠ Á
j

Õ
* | k

6
+ v

j

Õ
k

+ E[Á
j

Õ | k]

= S
k

(ṽ
k

) + v
j

Õ
k

+ E[Á
j

Õ | k]

= V
l(jÕ

,k) + Â
j

Õ
k

+ �2(jÕ, ‡
k

),

where, recalling from the proof of Proposition 2 that v
j

Õ
,k

= V
l(jÕ

,k)+Â
j

Õ
k

and H̃≠1
k

(‡
k

) = ṽ
k

,
we define �2(jÕ, ‡

k

) = S
k

(H̃≠1
k

(‡
k

)) + E[Á
j

Õ | k].

A.4 Proof of Proposition 4

Let (j1
k

, . . . , jDk
k

) denote a generic sequence of D
k

decisions by which state kú is attainable
from state k. Similarly, let ld

k

denote the intermediate state in which the d-th decision is
made, where l1

k

= k and ld
k

= l(jd≠1
k

, ld≠1
k

). Then, by recursively applying Proposition 2 for
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the continuation choice j = 0, we can write

V
k

= V
k

ú +
Dkÿ

d=1

1
Â

j

d
k ,l

d
k

≠ Â0,l

d
k

2
+

Dkÿ

d=1
�1(0, jd

k

, ‡
l

d
k
). (22)

Recalling the Bellman equation from (1) and rearranging terms we can restate V
k

as

flV
k

= u
k

+
ÿ

l ”=k

q
kl

(V
l

≠ V
k

) + ⁄ E max
j

{Â
jk

+ Á
j

+ V
l(j,k) ≠ V

k

}. (23)

Applying a similar procedure as in (22) for each l ”= k for which q
kl

> 0 implies that we
can write the di�erences V

l

≠ V
k

on the right-hand side of (23) in terms of a di�erence of
terms of the form in (22), where the V

k

ú term cancels leaving only sums of instantaneous
payo�s Â

jk

and functions of the CCPs ‡
k

. Finally, using Proposition 3 and additivity, we
can express the remaining term ⁄ E max

j

{Â
jk

+ Á
j

+ V
l(j,k) ≠ V

k

} as ⁄�2(0, ‡
k

) + ⁄Â0k

.

A.5 Proof of Propositions 5 and 6

Given a collection of equilibrium best response probabilities {‡
i

}N

i=1, we can obtain a matrix
expression for the value function V

i

(‡
i

) by rewriting (6). Let �
m

(‡
m

) denote the K ◊ K

state transition matrix induced by the choice probabilities ‡
m

and the continuation state
function l(m, ·, ·). Let Q̃0 denote the matrix formed by replacing the diagonal elements of
Q0 with zeros. Finally, let E

i

(‡) be the K ◊1 matrix containing the ex-ante expected value
of the immediate payo� (both the instantaneous payo� and the choice-specific shock) for
player i as defined in Proposition 6.

Then, we can rewrite (6) in matrix form as

Ë
(fl + N⁄) I ≠ (Q0 ≠ Q̃0)

È
V

i

(‡
i

)

= u
i

+ Q̃0V
i

(‡
i

) +
ÿ

m”=i

⁄�
m

(‡
m

)V
i

(‡
i

) + ⁄ [�
i

(‡
i

)V
i

(‡
i

) + E
i

(‡)] .

Collecting terms involving V
i

(‡
i

) yields
C

(fl + N⁄) I ≠
Nÿ

m=1
⁄�

m

(‡
m

) ≠ Q0

D

V
i

(‡
i

) = u
i

+ ⁄E
i

(‡).

The matrix on the left hand side is strictly diagonally dominant since the diagonal of Q

equals the o�-diagonal row sums, the elements of each matrix �
m

(‡
m

) are in [0, 1] for all
m, and fl > 0 by Assumption 2. Therefore, by the Levy-Desplanques theorem, this matrix
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is nonsingular (Horn and Johnson, 1985, Theorem 6.1.10). Hence,

V
i

(‡
i

) =
C

(fl + N⁄) I ≠
Nÿ

m=1
⁄�

m

(‡
m

) ≠ Q0

D≠1

[u
i

+ ⁄E
i

(‡)] . (24)

Now, define the mapping � : [0, 1]N◊J◊K æ [0, 1]N◊J◊K by stacking the best response
probabilities. This mapping defines a fixed point problem for the equilibrium choice prob-
abilities ‡

ijk

as follows:

�
ijk

(‡) =
⁄

1
Ó

Á
ij

Õ ≠ Á
ij

Æ Â
ijk

≠ Â
ij

Õ
k

+ V
i,l(i,j,k)(‡i

) ≠ V
i,l(i,jÕ

,k)(‡i

) ’jÕ œ A
i

Ô
f(Á

i

) dÁ
i

.

The mapping � is a continuous function from a compact, convex space into itself. By
Brouwer’s theorem, it has a fixed point. The fixed point probabilities imply Markov strate-
gies that constitute a Markov perfect equilibrium.

A.6 Proof of Proposition 7

The proof proceeds along the lines of Theorem 1 of Blevins (2016), for identification of
first-order systems of stochastic di�erential equations, while making use of properties that
are specific to the case of Markov jump processes. In our model, Q can be expressed as a
coe�cient matrix in the (non-stochastic) system P Õ(�) = QP (�) with P (0) = I. Recall
from (11) that P (�) is the matrix exponential of �Q. There may be multiple solutions to
(11), but we will show that Q is the only solution that satisfies the restrictions.

By Gantmacher (1959, VIII.8) and the distinct eigenvalue assumption on Q, all alterna-
tive solutions Q̃ to exp(�Q̃) = P (�) have the form Q̃ = Q+UDU≠1 where U is the matrix
of eigenvectors of Q and D is a diagonal matrix containing di�erences between the complex
eigenvalues of Q and Q̃. This means that both the eigenvectors U and the real eigenvalues
of Q are identified. But Q is an intensity matrix with zero row sums (i.e., Qe = 0, where
e is a K ◊ 1 vector of ones) and so Q has a real eigenvalue equal to zero and hence the
number of complex eigenvalues is at most K ≠ 1.

For Q̃ to be admissible it must satisfy the prior restrictions R vec(Q̃) = r. By the rela-
tionship between Q and Q̃ above, we have R vec(Q + UDU≠1) = r. But R vec(Q) = r, and
by linearity of the vectorization operator, R vec(UDU≠1) = 0. An equivalent representation
is R(U≠€ ¢ U) vec(D) = 0, where U≠€ ¢ U is nonsingular. Following the proof of Theorem
1 of Blevins (2016), but with at most K ≠ 1 complex eigenvalues, we can complete the
system of equations to show that when there are at least

Í
K≠1

2

Î
linear restrictions and R

has full rank, then D must be generically zero and therefore Q̃ = Q.
Finally, we show that there are su�ciently many restrictions of full rank. The total
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number of distinct states is K = ŸN . Consider a single row of Q. The diagonal element
is non-zero and for each player i, since there are J choices including the outside option,
this leads to J ≠ 1 nonzero elements per row of the Q matrix associated with transitions
due to player i. Therefore with N players there are a total of K ≠ N(J ≠ 1) ≠ 1 =
ŸN ≠NJ +N ≠1 zeros per row of Q. The order condition—that the number of restrictions is
at least Â(K ≠ 1)/2Ê—is therefore satisfied when ŸN ≠NJ +N ≠1 Ø

Í
(ŸN ≠ 1)/2

Î
or when

the number of choices J is such that J Æ 1
N

Ë
ŸN ≠

Í
(ŸN ≠ 1)/2

Î
+ N ≠ 1

È
. The matrix R

representing these restrictions has full rank because each restriction involves only a single
element of Q and each row of R is a di�erent row of the K2 ◊ K2 identity matrix. The
su�cient condition stated in the text follows by noting that

Í
(ŸN ≠ 1)/2

Î
Æ (ŸN ≠ 1)/2.

A.7 Proof of Proposition 8

Note that under Assumption 4, for any action j > 0 in any state k, the resulting state is
always di�erent from k. Therefore, the diagonal elements of S

ij

are all zero and S
ij

≠I
K

has
full rank for each j > 0. We established that �

i

is nonsingular in the proof of Proposition 5
above. It follows that X

i

has full rank.

A.8 Proof of Proposition 9

Step 1: Uniform Convergence of L
M

to L—We apply the uniform law of large numbers of
Newey and McFadden (1994, Lemma 2.4) to establish uniform convergence. The data are
independent and identically distributed, the parameter space is compact (Assumption 8),
the observation likelihood is continuous at each (◊, h) with probability one, and the ob-
servation likelihood is strictly bounded between 0 and 1 under additive separability of the
idiosyncratic shocks (Assumption 3) and Assumption 5, and since the rates ⁄ and q

kl

are
bounded for all k and l (Assumption 2).

Step 2: Consistency of ◊̂—By assumption, ĥ is a
Ô

M -consistent M-estimator. Let
R

M

(h) = 1
M

q
M

m=1 r
m

(h) denote the corresponding objective function and let r
m

© r
m

(h0).
(For example, for nonparametric MLE we would have r

m

(h) =
q

T

n=1 ln P
km,n≠1,kmn(�; h)).

We have shown above that L
M

converges uniformly in probability to L. L is also uniformly
continuous in ◊ and h. Therefore, by Lemma 24.1 of Gourieroux and Monfort (1995),
L

M

(◊, ĥ) converges in probability to L(◊, h0) uniformly in ◊. Then, Assumption 9 implies
that ◊0 is the only element of � for which h0 = �(◊, h0). By the Kullback-Leibler infor-
mation inequality, it follows that ◊0 is the unique maximizer of L(◊, h0) in �. It follows by
Theorem 2.1 of Newey and McFadden (1994) that ◊̂ = arg max

◊œ� L
M

(◊, ĥ) pæ ◊0.
Step 3: Asymptotic Normality of ◊̂—The first order conditions for ◊̂ are Ò

◊

L
M

(◊̂, ĥ) = 0.
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By a mean value expansion between (◊0, h0) and (◊̂, ĥ) and by consistency of the latter,

0 = Ò
◊

L
M

(◊0, h0) + Ò
◊◊

€ L
M

(◊0, h0)(◊̂ ≠ ◊0) + Ò
◊h

€ L
M

(◊0, h0)(ĥ ≠ h0) + o
p

(1).

By the central limit theorem and information matrix equality, Ò
◊◊

€ L
M

(◊0, h0) pæ ≠�
◊◊

€

and Ò
◊h

€ L
M

(◊0, h0) pæ ≠�
◊h

€ . It follows that

Ô
M(◊̂ ≠ ◊0) = �≠1

◊◊

€

I

�
◊h

€

A
1Ô
M

Mÿ

m=1
Ò

h

r
m

B

+
A

1Ô
M

Mÿ

m=1
Ò

◊

s
m

BJ

+ o
p

(1).

Finally, under the maintained assumptions � is continuously di�erentiable and the transition
probabilities are bounded away from zero. The regularity conditions of Theorem 5.1 of
Newey and McFadden (1994) are satisfied, so the generalized information matrix equality
holds (Newey and McFadden, 1994, p. 2163), E[Ò

h

r
m

Ò
◊

€ s
m

] = 0, and E[Ò
h

r
m

Ò
h

€ s
m

] =
I. Thus,
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1
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2
.

The result holds by applying the continuous mapping theorem.
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Table 1: Summary Statistics

Mean S.D. Max.
Number of Chains Presenta 2.559 0.024 7
Average No. of Stores per Chainb 3.727 0.040 32
Number of Wal-Marts Presenta 1.004 0.142 12
Number of Fringe Firms Presenta 12.997 0.823 47
Number of New Chain Storesc 0.277 0.012 5
Number of Exiting Chain Stores 0.224 0.011 7
Number of New Fringe Stores 0.825 0.021 10
Number of Exiting Fringe Stores 0.908 0.023 11
Number of New Wal-Marts 0.177 0.008 3
Number of Exiting Wal-Marts 0.002 0.001 1
Population Increase 0.042 0.004 1
Population Decrease 0.004 0.001 1

a Sample size is 2910, b Sample size is 7446 and removes all market-period combinations where the chain
operates no stores, c Sample size in this and all remaining rows is 2686.

Table 2: Response to Initial Wal-Mart Entry

Year Year Year
Before During After

Number of New Chain Stores 0.311 0.211 0.189
(0.064) (0.054) (0.041)

Number of Exiting Chain Stores 0.122 0.156 0.189
(0.038) (0.044) (0.050)

Number of New Fringe Stores 0.867 0.711 0.767
(0.117) (0.105) (0.102)

Number of Exiting Fringe Stores 0.789 0.844 0.833
(0.114) (0.118) (0.132)

Standard errors in parentheses. Based on 90 markets where Wal-Mart is first observed to enter.
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Table 3: Chain Firm Parameters

With Wal-Mart No Unobserved
Time-aggregated Entry Times Heterogeneity
Coe�. S.E. Coe�. S.E. Coe�. S.E.

Constant (◊c
0) 4.470 (0.768) 4.403 (0.749) 2.561 (0.409)

Number of Chain Stores (◊c
1) -0.065 (0.024) -0.067 (0.024) -0.017 (0.014)

Number of Wal-Marts (◊c
2) -0.375 (0.148) -0.383 (0.139) -0.278 (0.108)

Number of Fringe Stores (◊c
3) -0.052 (0.017) -0.053 (0.017) -0.040 (0.012)

Number of Own Stores (◊c
4) -0.039 (0.081) -0.044 (0.084) 0.104 (0.051)

Number of Own Stores Sq./100 (100 ◊ ◊c
5) -0.182 (0.432) -0.165 (0.445) -0.265 (0.166)

Population (◊c
6) 0.176 (0.114) 0.213 (0.111) 0.267 (0.075)

Unobserved State (◊c
7) -0.956 (0.881) -0.968 (0.806)

Unobserved State ◊ Number of Own Stores (◊c
8) 0.245 (0.199) 0.249 (0.191)

Entry Cost (÷c
0) -18.377 (0.805) -18.400 (0.807) -17.643 (0.953)

Entry Cost ◊ Unobserved State (÷c
1) -5.151 (1.621) -5.148 (1.676)

Store Building Cost (Ÿc
0) -5.068 (0.876) -5.073 (0.870) -4.494 (0.782)

Store Building Cost ◊ Unobserved State (Ÿc
1) 3.513 (0.968) 3.508 (0.986)

Exit Value („c
0) 15.913 (0.888) 15.912 (0.896) 15.044 (0.633)

Exit Value ◊ Unobserved State („c
1) 4.166 (1.261) 4.126 (1.274)
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Table 4: Fringe Firm Parameters

With Wal-Mart No Unobserved
Time-aggregated Entry Times Heterogeneity
Coe�. S.E. Coe�. S.E. Coe�. S.E.

Constant (◊f
1) -13.074 (0.080) -13.092 (0.080) -12.698 (0.067)

Number of Chain stores (◊f
2) -0.021 (0.003) -0.021 (0.003) -0.018 (0.003)

Number of Wal-Marts (◊f
2) -0.041 (0.012) -0.042 (0.012) -0.054 (0.012)

Number of Fringe Stores (◊f
3) 0.183 (0.008) 0.183 (0.008) 0.193 (0.008)

Number of Fringe Stores Squared / 100 (100 ◊ ◊f
4) -0.349 (0.018) -0.349 (0.019) -0.369 (0.018)

Population (◊f
5) 0.240 (0.021) 0.248 (0.021) 0.170 (0.021)

Unobserved State (◊f
6) -2.530 (0.107) -2.544 (0.107)

Unobserved State ◊ Number of Fringe Stores (◊f
7) 0.050 (0.006) 0.051 (0.006)

Entry Cost (÷f
0) -5.034 (0.033) -5.034 (0.033) -5.030 (0.033)

Entry Cost ◊ Unobserved State (÷f
1) 1.186 (0.079) 1.190 (0.079)
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Table 5: Counterfactual Simulations of Market Structure in Year 2014 With and Without Wal-Mart

Initial Chain Chain Fringe Wal-Mart Chain Wal-Mart Fringe
Markets Pop Firms Stores Stores Stores Share Share Share C1 C3 HHI

With Wal-Mart
All Markets 205 176153 2.41 9.17 11.98 2.42 39.9% 10.8% 49.4% 25.4% 48.1% 0.22
Midwest 58 175371 1.75 5.88 14.36 2.07 27.3% 9.9% 62.7% 21.7% 39.1% 0.20
Northeast 22 205180 2.18 8.48 14.32 2.58 35.2% 10.7% 54.1% 24.0% 45.3% 0.21
South 83 170856 2.78 11.72 9.63 2.85 49.1% 12.1% 38.7% 29.1% 55.8% 0.24
West 42 172494 2.71 9.02 12.11 1.96 41.3% 9.3% 49.4% 23.8% 46.6% 0.20

Absent Wal-Mart
All Markets 205 176153 2.77 12.43 9.85 0.00 54.9% 0.0% 44.6% 29.9% 55.7% 0.26
Midwest 58 175371 2.13 8.41 11.81 0.00 42.0% 0.0% 58.0% 27.6% 47.5% 0.25
Northeast 22 205180 2.61 12.22 11.18 0.00 53.7% 0.0% 46.3% 30.6% 55.4% 0.27
South 83 170856 3.22 16.15 7.54 0.00 66.9% 0.0% 32.7% 33.2% 64.3% 0.28
West 42 172494 2.86 10.77 11.02 0.00 49.5% 0.0% 48.8% 25.9% 50.2% 0.23
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Table 6: Counterfactual Simulations of Changes in Market Structure Due to Wal-Mart’s Presence

Initial Wal-Mart Chain Fringe Chain Fringe
Markets Pop Stores Stores Stores Share Share C1 C3 HHI

All Markets 205 176153 2.42 -26.3% 21.6% -27.3% 10.6% -15.0% -13.7% -16.6%
By Region

Midwest 58 175371 2.07 -30.1% 21.6% -34.8% 8.1% -21.3% -17.8% -19.3%
Northeast 22 205180 2.58 -30.5% 28.1% -34.5% 16.8% -21.5% -18.4% -21.8%
South 83 170856 2.85 -27.4% 27.7% -26.5% 18.7% -12.4% -13.2% -15.6%
West 42 172494 1.96 -16.3% 9.9% -16.6% 1.2% -8.1% -7.2% -11.9%

By Market Size
Small 104 117740 1.76 -24.3% 7.0% -23.1% 5.0% -12.1% -9.9% -14.1%
Large 101 236300 3.09 -27.4% 30.0% -31.7% 16.2% -18.1% -17.9% -19.4%

By Growth Type
Slow 54 178252 2.26 -35.8% 40.6% -36.5% 24.3% -22.3% -21.0% -23.8%
Moderate 46 175444 2.17 -38.9% 18.5% -38.3% 15.2% -16.3% -17.6% -9.7%
Fast 105 175383 2.61 -17.4% 13.5% -18.6% 1.0% -10.1% -8.4% -14.9%

By Unobserved Type
More Negative 9 106248 1.20 -18.5% -17.2% -6.7% -6.2% 29.6% 27.3% 42.3%
Negative 68 127754 1.62 -15.9% 2.7% -17.9% -2.5% -9.4% -5.5% -11.3%
Zero 96 184404 2.20 -27.8% 25.2% -31.1% 18.2% -20.0% -19.2% -22.0%
Positive 32 273906 5.08 -30.5% 59.1% -33.7% 40.6% -15.1% -17.8% -17.7%
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Table 7: Counterfactual Simulations of Changes in Market Structure Absent Unobserved Heterogeneity

Wal-Mart Chain Fringe Chain Fringe
Stores Stores Stores Share Share C1 C3 HHI

All Markets 3.15 -33.2% 7.3% -33.1% 9.0% -12.9% -9.7% -7.0%
By Region

Midwest 2.92 -38.4% 9.7% -41.5% 8.3% -17.2% -12.0% -6.6%
Northeast 3.24 -35.8% 7.0% -36.0% 9.7% -14.6% -10.6% -7.5%
South 3.28 -32.3% 7.4% -29.8% 11.7% -10.0% -8.5% -6.6%
West 3.15 -28.6% 3.4% -29.4% 3.9% -12.4% -8.7% -7.6%

By Market Size
Large 3.65 -30.5% 7.3% -29.6% 7.2% -12.2% -9.5% -7.8%
Small 2.66 -37.5% 7.1% -36.2% 11.5% -13.9% -10.3% -6.8%

By Unobserved Type
More Negative 2.22 -42.9% 15.6% -43.9% 13.1% -16.6% -14.9% -2.9%
Negative 2.71 -35.9% 6.0% -36.9% 8.5% -14.9% -9.8% -6.5%
Zero 3.24 -33.7% 6.7% -32.8% 7.6% -12.2% -9.1% -6.2%
Positive 4.07 -29.6% 9.3% -24.4% 13.7% -10.1% -10.1% -12.5%
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Table 8: Temporal Evolution of Market Structure

Year Market Size WM Stores Chain Stores Fringe Stores Chain Share Fringe Share C1 C3 HHI
5 Small 0.58 -6.8% 3.4% -7.9% -0.1% -5.7% -6.3% -9.9%
5 Large 0.87 -10.0% 5.2% -9.9% 2.9% -5.2% -7.5% -10.1%
10 Small 1.06 -13.7% 5.4% -14.3% 0.8% -9.3% -9.2% -14.3%
10 Large 1.76 -16.8% 12.8% -18.3% 6.6% -10.2% -12.0% -15.6%
15 Small 1.45 -19.5% 6.5% -19.4% 2.0% -11.5% -10.3% -15.4%
15 Large 2.52 -22.3% 21.3% -25.6% 11.1% -14.6% -15.2% -18.2%
20 Small 1.76 -24.3% 7.0% -23.1% 5.0% -12.1% -9.9% -14.1%
20 Large 3.09 -27.4% 30.0% -31.7% 16.2% -18.1% -17.9% -19.4%
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