Problem 1. Monotonicity of preference relations

Show that

- a. If \succeq is strongly monotone, then it is monotone.
- b. If \succeq is monotone, then it is locally non-satiated.

Problem 2. The strict dominance preference relation

Let $X = \mathbb{R}^3_+$ be a choice set and let $x, y \in X$, where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. Consider the *strict dominance* preference relation \succeq on X, where

 $x \succeq y$ iff $x_1 \ge y_1, x_2 \ge y_2$, and $x_3 \ge y_3$.

Determine whether \succeq is (i) complete, (ii) transitive, (iii) monotone, or (iv) convex.

Problem 3. True or False?

Determine whether the following statements are true or false and support your answer with a proof, counter-example, or rigorous reasoning.

- a. Every rational preference relation on $X \subseteq \mathbb{R}$ has a utility function representation.
- b. Every utility function induces a rational preference relation which represents the same preferences.
- c. All utility functions representing convex preferences must be quasi-concave.
- d. Rationality of preferences is sufficient to keep indifference curves from crossing.

Problem 4. Lexicographic Preferences

The Lexicographic preference ordering is defined for $x, y \in X = \mathbb{R}^2_+$ as follows: $x \succeq y$ iff $x_1 \ge y_1$ or $(x_1 = y_1 \text{ and } x_2 \ge y_2)$.

- a. For some point $x \in X$, draw the upper and lower contour sets and the indifference curve at x.
- b. Prove that there is no utility function representation for these preferences.

Problem 5. Cobb-Douglas and Leontif Utility

A consumer has a utility function of the form $u(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$. She has wealth w and faces prices p_x and p_y respectively for goods x and y.

- a. Find her Marshallian (uncompensated) demand and her indirect utility function.
- b. Now suppose the she has the utility function $u(x, y) = \ln x + 2 \ln y$. What are her Marshallian demand functions for both goods?
- c. What about $u(x, y) = min\{x, 3y\}$?